7,060 research outputs found
Shell evolution of N=20 nuclei and Gamow-Teller strengths of Mg by the deformed QRPA
Gamow-Teller (GT) strength distributions of Mg isotopes are investigated
within a framework of the deformed quasi-particle random phase
approximation(DQRPA). We found that the N=20 shell closure in Mg
was broken by the prolate shape deformation originating from the {\it
fp}-intruder states. The shell closure breaking gives rise to a shift of
low-lying GT excited states into high-lying states. Discussions regarding the
shell evolution trend of single particle states around N=20 nuclei are also
presented with the comparison to other approaches.Comment: 5 pages, 5 figures. arXiv admin note: text overlap with
arXiv:1206.2156. text overlap with arXiv:1206.215
Neutrino reactions on La and Ta via charged and neutral currents by the Quasi-particle Random Phase Approximation (QRPA)
Cosmological origins of the two heaviest odd-odd nuclei, La and
Ta, are believed to be closely related to the neutrino-process. We
investigate in detail neutrino-induced reactions on the nuclei. Charged current
(CC) reactions, BaLa and HfTa, are calculated by the standard Quasi-particle Random Phase
Approximation (QRPA) with neutron-proton pairing as well as neutron-neutron,
proton-proton pairing correlations. For neutral current (NC) reactions,
La{La} and TaTa, we generate ground and excited states of odd-even target nuclei,
La and Ta, by operating one quasi-particle to even-even nuclei,
Ba and Hf, which are assumed as the BCS ground state. Numerical
results for CC reactions are shown to be consistent with recent semi-empirical
data deduced from the Gamow-Teller strength distributions measured in the
(He, t) reaction. Results for NC reactions are estimated to be smaller by
a factor about 4 5 rather than those by CC reactions. Finally, cross
sections weighted by the incident neutrino flux in the core collapsing
supernova are presented for further applications to the network calculations
for relevant nuclear abundances
State Complexity of Regular Tree Languages for Tree Matching
We study the state complexity of regular tree languages for tree matching problem. Given a tree t and a set of pattern trees L, we can decide whether or not there exists a subtree occurrence of trees in L from the tree t by considering the new language L′ which accepts all trees containing trees in L as subtrees. We consider the case when we are given a set of pattern trees as a regular tree language and investigate the state complexity. Based on the sequential and parallel tree concatenation, we define three types of tree languages for deciding the existence of different types of subtree occurrences. We also study the deterministic top-down state complexity of path-closed languages for the same problem.</jats:p
GABA(A) receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein
GABA(A) receptors are critical in controlling neuronal activity. Here, we examined the role for phospholipase C-related inactive protein type 1 (PRIP-1), which binds and inactivates protein phosphatase 1alpha (PP1alpha) in facilitating GABA(A) receptor phospho-dependent regulation using PRIP-1(-/-) mice. In wild-type animals, robust phosphorylation and functional modulation of GABA(A) receptors containing beta3 subunits by cAMP-dependent protein kinase was evident, which was diminished in PRIP-1(-/-) mice. PRIP-1(-/-) mice exhibited enhanced PP1alpha activity compared with controls. Furthermore, PRIP-1 was able to interact directly with GABA(A) receptor beta subunits, and moreover, these proteins were found to be PP1alpha substrates. Finally, phosphorylation of PRIP-1 on threonine 94 facilitated the dissociation of PP1alpha-PRIP-1 complexes, providing a local mechanism for the activation of PP1alpha. Together, these results suggest an essential role for PRIP-1 in controlling GABA(A) receptor activity via regulating subunit phosphorylation and thereby the efficacy of neuronal inhibition mediated by these receptors
- …
