5,816 research outputs found
Laser-induced fluorescence for film thickness mapping in pure sliding lubricated, compliant, contacts
Analysis of ankle inversion sprain injury mechanism from accidental injury cases captured in televised basketball matches
Klebsiella infection in patients with thalassemia
Klebsiella infection has previously been reported in a few patients with transfusion-dependent thalassemia. The incidence and clinical spectrum of this infection in our cohort of patients were reviewed retrospectively. Among 160 patients observed for 12 years, there were 15 episodes of Klebsiella infection that occurred in 12 patients (7.5%), resulting in an incidence of 0.78 infections per 100 patient-years. The clinical spectrum included sinusitis (4 cases), intracranial infection (5 cases), septicemia (4 cases), and abscesses of the liver, lung, kidney, and parotid gland (1 case each). Three patients had recurrent infections involving different sites, 2 (16%) died of fulminant septicemia, and 3 (25%) had significant permanent neurological deficits. The antibiotic susceptibility pattern for the isolates was similar to the pattern for isolates recovered in the community. With regard to predisposing factors, iron overload and liver function derangement were found to be significant on univariate analysis (P = .046 and P = .049, respectively) but insignificant on multivariate analysis. Klebsiella infection was a serious and frequently encountered complication in our patients with transfusion-dependent thalassemia, resulting in high mortality and morbidity rates.published_or_final_versio
Gravitational Energy Loss and Binary Pulsars in the Scalar Ether-Theory of Gravitation
Motivation is given for trying a theory of gravity with a preferred reference
frame (``ether'' for short). One such theory is summarized, that is a scalar
bimetric theory. Dynamics is governed by an extension of Newton's second law.
In the static case, geodesic motion is recovered together with Newton's
attraction field. In the static spherical case, Schwarzschild's metric is got.
An asymptotic scheme of post-Minkowskian (PM) approximation is built by
associating a conceptual family of systems with the given weakly-gravitating
system. It is more general than the post-Newtonian scheme in that the velocity
may be comparable with . This allows to justify why the 0PM approximation of
the energy rate may be equated to the rate of the Newtonian energy, as is
usually done. At the 0PM approximation of this theory, an isolated system loses
energy by quadrupole radiation, without any monopole or dipole term. It seems
plausible that the observations on binary pulsars (the pulse data) could be
nicely fitted with a timing model based on this theory.Comment: Text of a talk given at the 4th Conf. on Physics Beyond the Standard
Model, Tegernsee, June 2003, submitted to the Proceedings (H. V.
Klapdor-Kleingrothaus, ed.
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction
published_or_final_versio
Enrichment of antioxidant capacity and vitamin E in pita made from barley
This study aimed to enhance total antioxidant and vitamin E content of pita bread, by replacing 50% of the standard baker's flour with flours milled from covered (WI2585 and Harrington) or hulless (Finniss) barley genotypes, previously shown to have high antioxidant and vitamin E levels at harvest. Pita breads were made from either 100% baker's flour (control) or 50% malt flour, whole-grain flour, or flour from barley grains pearled at 10%, 15%, and 20% grain weight. Antioxidant capacity and vitamin E content of flours and pitas were determined by their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and high performance liquid chromatography, respectively. The physical and sensory properties of the pitas were also assessed. All pitas made from either whole grain or pearled barley flour had a higher antioxidant capacity and most also had higher vitamin E content than standard pita. The antioxidant and vitamin E levels were reduced in pearled compared to whole grains, however the extent of that reduction varied among genotypes. The greatest antioxidant and vitamin E levels were found in pita made from malt flour or Finniss whole grain flour. Furthermore, sensory analysis suggested these pitas were acceptable to consumers and retained similar physical and sensory properties to those in the control pita.Thi Thu Dung Do, Beverly Muhlhausler, Amanda Box and Amanda J. Abl
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Baryon Washout, Electroweak Phase Transition, and Perturbation Theory
We analyze the conventional perturbative treatment of sphaleron-induced
baryon number washout relevant for electroweak baryogenesis and show that it is
not gauge-independent due to the failure of consistently implementing the
Nielsen identities order-by-order in perturbation theory. We provide a
gauge-independent criterion for baryon number preservation in place of the
conventional (gauge-dependent) criterion needed for successful electroweak
baryogenesis. We also review the arguments leading to the preservation
criterion and analyze several sources of theoretical uncertainties in obtaining
a numerical bound. In various beyond the standard model scenarios, a realistic
perturbative treatment will likely require knowledge of the complete two-loop
finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte
- …
