11 research outputs found

    Multiface: A Dataset for Neural Face Rendering

    Full text link
    Photorealistic avatars of human faces have come a long way in recent years, yet research along this area is limited by a lack of publicly available, high-quality datasets covering both, dense multi-view camera captures, and rich facial expressions of the captured subjects. In this work, we present Multiface, a new multi-view, high-resolution human face dataset collected from 13 identities at Reality Labs Research for neural face rendering. We introduce Mugsy, a large scale multi-camera apparatus to capture high-resolution synchronized videos of a facial performance. The goal of Multiface is to close the gap in accessibility to high quality data in the academic community and to enable research in VR telepresence. Along with the release of the dataset, we conduct ablation studies on the influence of different model architectures toward the model's interpolation capacity of novel viewpoint and expressions. With a conditional VAE model serving as our baseline, we found that adding spatial bias, texture warp field, and residual connections improves performance on novel view synthesis. Our code and data is available at: https://github.com/facebookresearch/multifac

    A Multi-view Structured-Light System for Highly Accurate 3D Modeling

    No full text
    1

    A Closed-Form Solution to Rotation Estimation for Structure from Small Motion

    No full text
    The introduction of small motion techniques such as small angle rotation approximation has enabled the three-dimensional reconstruction from a small motion of a camera, so-called structure from small motion (SfSM). In this letter, we propose a closed-form solution dedicated to the rotation estimation problem in SfSM. We show that our method works with a minimal set of two points, and has mild conditions to produce a unique optimal solution in practice. Also, we introduce a three-step SfSM pipeline with better convergence and faster speed compared to the state-of-the-art SfSM approaches. The key to this improvement is the separated estimation of the rotation with the proposed two-point method in order to handle the bas-relief ambiguity that affects the convergence of the bundle adjustment. We demonstrate the effectiveness of our two-point minimal solution and the threestep SfSM approach in synthetic and real-world experiments under the small motion regime.11Nsciescopu

    Deep Depth from Uncalibrated Small Motion Clip

    No full text
    We propose a novel approach to infer a high-quality depth map from a set of images with small viewpoint variations. In general, techniques for depth estimation from small motion consist of camera pose estimation and dense reconstruction. In contrast to prior approaches that recover scene geometry and camera motions using pre-calibrated cameras, we introduce a self-calibrating bundle adjustment method tailored for small motion which enables computation of camera poses without the need for camera calibration. For dense depth reconstruction, we present a convolutional neural network called DPSNet (Deep Plane Sweep Network) whose design is inspired by best practices of traditional geometry-based approaches. Rather than directly estimating depth or optical flow correspondence from image pairs as done in many previous deep learning methods, DPSNet takes a plane sweep approach that involves building a cost volume from deep features using the plane sweep algorithm, regularizing the cost volume, and regressing the depth map from the cost volume. The cost volume is constructed using a differentiable warping process that allows for end-to-end training of the network. Through the effective incorporation of conventional multiview stereo concepts within a deep learning framework, the proposed method achieves state-of-the-art results on a variety of challenging datasets. IEEE1

    A Real-time Augmented Reality System to See-Through Cars

    No full text
    One of the most hazardous driving scenario is the overtaking of a slower vehicle, indeed, in this case the front vehicle (being overtaken) can occlude an important part of the field of view of the rear vehicle's driver. This lack of visibility is the most probable cause of accidents in this context. Recent research works tend to prove that augmented reality applied to assisted driving can significantly reduce the risk of accidents. In this paper, we present a real-time marker-less system to see through cars. For this purpose, two cars are equipped with cameras and an appropriate wireless communication system. The stereo vision system mounted on the front car allows to create a sparse 3D map of the environment where the rear car can be localized. Using this inter-car pose estimation, a synthetic image is generated to overcome the occlusion and to create a seamless see-through effect which preserves the structure of the scene

    Accurate 3D Reconstruction from Small Motion Clip for Rolling Shutter Cameras

    No full text
    Structure from small motion has become an important topic in 3D computer vision as a method for estimating depth, since capturing the input is so user-friendly. However, major limitations exist with respect to the form of depth uncertainty, due to the narrow baseline and the rolling shutter effect. In this paper, we present a dense 3D reconstruction method from small motion clips using commercial hand-held cameras, which typically cause the undesired rolling shutter artifact. To address these problems, we introduce a novel small motion bundle adjustment that effectively compensates for the rolling shutter effect. Moreover, we propose a pipeline for a fine-scale dense 3D reconstruction that models the rolling shutter effect by utilizing both sparse 3D points and the camera trajectory from narrow-baseline images. In this reconstruction, the sparse 3D points are propagated to obtain an initial depth hypothesis using a geometry guidance term. Then, the depth information on each pixel is obtained by sweeping the plane around each depth search space near the hypothesis. The proposed framework shows accurate dense reconstruction results suitable for various sought-after applications. Both qualitative and quantitative evaluations show that our method consistently generates better depth maps compared to state-of-the-art methods

    Evaluation of Seasonal Groundwater Quality Changes Associated with Groundwater Pumping and Level Fluctuations in an Agricultural Area, Korea

    No full text
    This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage

    Facial Depth and Normal Estimation using Single Dual-Pixel Camera

    No full text
    Recently, Dual-Pixel (DP) sensors have been adopted in many imaging devices. However, despite their various advantages, DP sensors are used just for faster auto-focus and aesthetic image captures, and research on their usage for 3D facial understanding has been limited due to the lack of datasets and algorithmic designs that exploit parallax in DP images. It is also because the baseline of sub-aperture images is extremely narrow, and parallax exists in the defocus blur region. In this paper, we introduce a DP-oriented Depth/Normal estimation network that reconstructs the 3D facial geometry. In addition, to train the network, we collect DP facial data with more than 135K images for 101 persons captured with our multi-camera structured light systems. It contains ground-truth 3D facial models including depth map and surface normal in metric scale. Our dataset allows the proposed network to be generalized for 3D facial depth/normal estimation. The proposed network consists of two novel modules: Adaptive Sampling Module (ASM) and Adaptive Normal Module (ANM), which are specialized in handling the defocus blur in DP images. Finally, we demonstrate that the proposed method achieves state-of-the-art performances over recent DP-based depth/normal estimation methods. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG
    corecore