26 research outputs found
Vehicular CO emission prediction using support vector regression model and GIS
© 2018 by the authors. Transportation infrastructures play a significant role in the economy as they provide accessibility services to people. Infrastructures such as highways, road networks, and toll plazas are rapidly growing based on changes in transportation modes, which consequently create congestions near toll plaza areas and intersections. These congestions exert negative impacts on human health and the environment because vehicular emissions are considered as the main source of air pollution in urban areas and can cause respiratory and cardiovascular diseases and cancer. In this study, we developed a hybrid model based on the integration of three models, correlation-based feature selection (CFS), support vector regression (SVR), and GIS, to predict vehicular emissions at specific times and locations on roads at microscale levels in an urban areas of Kuala Lumpur, Malaysia. The proposed model comprises three simulation steps: first, the selection of the best predictors based on CFS; second, the prediction of vehicular carbon monoxide (CO) emissions using SVR; and third, the spatial simulation based on maps by using GIS. The proposed model was developed with seven road traffic CO predictors selected via CFS (sum of vehicles, sum of heavy vehicles, heavy vehicle ratio, sum of motorbikes, temperature, wind speed, and elevation). Spatial prediction was conducted based on GIS modelling. The vehicular CO emissions were measured continuously at 15 min intervals (recording 15 min averages) during weekends and weekdays twice per day (daytime, evening-time). The model's results achieved a validation accuracy of 80.6%, correlation coefficient of 0.9734, mean absolute error of 1.3172 ppm and root mean square error of 2.156 ppm. In addition, the most appropriate parameters of the prediction model were selected based on the CFS model. Overall, the proposed model is a promising tool for traffic CO assessment on roads
Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos
© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. A good landslide inventory map is a prerequisite for landslide hazard and risk analysis. In tropical countries, such as Malaysia, preparation of the landslide inventory is a challenging task because of the rapid growth of vegetation. Thus, it is crucial to use rapid and accurate technique and effective parameters. For this purpose, Dempster Shafer theory (DST) was applied in fusing high resolution LiDAR derived data products and Greenness index derived from orthophoto imagery. Two sites were selected, for the implementation and evaluation of the DST model; site “A” for DST implementation and site “B” for the comparison. For model implementation, vegetation index, slope and height were used as effective parameters for identifying automatic landslide detection. Two type of DST based fusions were evaluated; (greenness and height) and (greenness and slope). Furthermore, validation techniques were used to validate the accuracy are confusion matrix and area under the curve. The overall accuracy of the first and second evaluated fusions were (73.4% and 84.33%), and area under the curve were (0.76 and 0.81) respectively. Additionally, the result was compared with Random Forest (RF) based detection approach. The results showed that DST does not require a priori knowledge
Comparison of pixel-based and object-based image classification techniques in extracting information from UAV imagery data
© Published under licence by IOP Publishing Ltd. As the rapid development is being focused in the urban area, there is a need for the utilisation of a rapid system for updating this profile immediately. One of the current technologies being applied in recent years is the use of unmanned aerial vehicle (UAV) for mapping purposes. The use of UAV is widespread in various fields because it is low cost, has high resolution and is able to fly at low altitude without the constraints of cloudy weather. Typically, the method of data extraction for UAV in Malaysia is still very limited and the traditional methods are still being implemented by some industries. The features from aerial photo orthomosaic are manually detected and digitised from visual interpretation for the mapping purposes. Unfortunately, these methods are tedious, expensive, consume much time, and may involve much fieldwork, to acquire only a limited information. Pixel-based technique is often used to extract low level features where the image is classified according to the spectral information where the pixels in the overlapping region will be misclassified due to the confusion among the classes. The supervised object-based image analysis (OBIA) classification technique is widely used nowadays for automatic data extraction. Therefore, the general objective of this study is to assess the capability of UAV with high resolution data for image classifications. The pixel-based and OBIA classifications were compared using the Support Vector Machine (SVM) classifier. The classifications were assessed using different numbers of sample size. The result shows that OBIA gives a better result of Overall Accuracy (OA) than pixel-based. The consequences of this study accommodate further understanding and additional insight of utilising OBIA technique with different classifiers for the extended study
Oil palm counting and age estimation from WorldView-3 imagery and LiDAR data using an integrated OBIA height model and regression analysis
Copyright © 2018 Hossein Mojaddadi Rizeei et al. The current study proposes a new method for oil palm age estimation and counting from Worldview-3 satellite image and light detection and range (LiDAR) airborne imagery. A support vector machine algorithm (SVM) of object-based image analysis (OBIA) was implemented for oil palm counting. The sensitivity analysis was conducted on four SVM kernel types with associated segmentation parameters to obtain the optimal crown coverage delineation. Extracting tree's crown was integrated with height model and multiregression methods to accurately estimate the age of trees. The multiregression model with multikernel sizes was examined to achieve the most optimized model for age estimation. Applied models were trained and examined over five different oil palm plantations. The results of oil palm counting had an overall accuracy of 98.80%, while the overall accuracy of age estimation showed 84.91%, over all blocks. The relationship between tree's height and age was significant which supports the polynomial regression function (PRF) model with a 3 × 3 kernel size for under 10-12-year-old oil palm trees, while exponential regression function (ERF) is more fitted for older trees (i.e., 22 years old). Overall, recent remote sensing dataset and machine learning techniques are useful in monitoring and detecting oil palm plantation to maximize productivity
Deep Learning Approach for Building Detection Using LiDAR-Orthophoto Fusion
© 2018 Faten Hamed Nahhas et al. This paper reports on a building detection approach based on deep learning (DL) using the fusion of Light Detection and Ranging (LiDAR) data and orthophotos. The proposed method utilized object-based analysis to create objects, a feature-level fusion, an autoencoder-based dimensionality reduction to transform low-level features into compressed features, and a convolutional neural network (CNN) to transform compressed features into high-level features, which were used to classify objects into buildings and background. The proposed architecture was optimized for the grid search method, and its sensitivity to hyperparameters was analyzed and discussed. The proposed model was evaluated on two datasets selected from an urban area with different building types. Results show that the dimensionality reduction by the autoencoder approach from 21 features to 10 features can improve detection accuracy from 86.06% to 86.19% in the working area and from 77.92% to 78.26% in the testing area. The sensitivity analysis also shows that the selection of the hyperparameter values of the model significantly affects detection accuracy. The best hyperparameters of the model are 128 filters in the CNN model, the Adamax optimizer, 10 units in the fully connected layer of the CNN model, a batch size of 8, and a dropout of 0.2. These hyperparameters are critical to improving the generalization capacity of the model. Furthermore, comparison experiments with the support vector machine (SVM) show that the proposed model with or without dimensionality reduction outperforms the SVM models in the working area. However, the SVM model achieves better accuracy in the testing area than the proposed model without dimensionality reduction. This study generally shows that the use of an autoencoder in DL models can improve the accuracy of building recognition in fused LiDAR-orthophoto data
Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. An accurate inventory map is a prerequisite for the analysis of landslide susceptibility, hazard, and risk. Field survey, optical remote sensing, and synthetic aperture radar techniques are traditional techniques for landslide detection in tropical regions. However, such techniques are time consuming and costly. In addition, the dense vegetation of tropical forests complicates the generation of an accurate landslide inventory map for these regions. Given its ability to penetrate vegetation cover, high-resolution airborne light detection and ranging (LiDAR) has been used to generate accurate landslide maps. This study proposes the use of recurrent neural networks (RNN) and multi-layer perceptron neural networks (MLP-NN) in landscape detection. These efficient neural architectures require little or no prior knowledge compared with traditional classification methods. The proposed methods were tested in the Cameron Highlands, Malaysia. Segmentation parameters and feature selection were respectively optimized using a supervised approach and correlation-based feature selection. The hyper-parameters of network architecture were defined based on a systematic grid search. The accuracies of the RNN and MLP-NN models in the analysis area were 83.33% and 78.38%, respectively. The accuracies of the RNN and MLP-NN models in the test area were 81.11%, and 74.56%, respectively. These results indicated that the proposed models with optimized hyper-parameters produced the most accurate classification results. LiDAR-derived data, orthophotos, and textural features significantly affected the classification results. Therefore, the results indicated that the proposed methods have the potential to produce accurate and appropriate landslide inventory in tropical regions such as Malaysia
A review of applying second-generation wavelets for noise removal from remote sensing data.
The processing of remotely sensed data includes compression, noise reduction, classification, feature extraction, change detection and any improvement associated with the problems at hand. In the literature, wavelet methods have been widely used for analysing remote sensing images and signals. The second-generation of wavelets, which is designed based on a method called the lifting scheme, is almost a new version of wavelets, and its application in the remote sensing field is fresh. Although first-generation wavelets have been proven to offer effective techniques for processing remotely sensed data, second-generation wavelets are more efficient in some respects, as will be discussed later. The aim of this review paper is to examine all existing studies in the literature related to applying second-generation wavelets for denoising remote sensing data. However, to make a better understanding of the application of wavelet-based denoising methods for remote sensing data, some studies that apply first-generation wavelets are also presented. In the part of hyperspectral data, there is a focus on noise removal from vegetation spectrum
Assessing flood inundation mapping through estimated discharge using GIS and HEC-RAS model
© 2018, Saudi Society for Geosciences. Water discharge is the main parameter in hydraulic modeling for flood hazard assessment. However, the unavailability of data on discharge and observed river morphologies resulted in erroneous calculations and irregularities in flood inundation mapping. The objectives of this study are (i) to investigate uncertainties of hydraulic parameters (width, cross-sectional depth, and channel slope) used in discharge equation and (ii) to examine the influence of estimate discharge on water extent and flood depth with different boundary conditions on interferometric synthetic aperture radar (IFSAR) and modified IFSAR DEMs. Sensitivity analysis was conducted with the Monte Carlo simulation method to generate random data combinations. Bjerklie’s equation was used to calculate discharge based on the three variables, and Manning’s n was substituted into the Hydrologic Engineering Center River Analysis System (HEC-RAS) model. TerraSAR-X was used to distinguish existing flood water bodies and normal water extent. The uncertainty of the combined variables was assessed with the likelihood measures such as F-statistic, mean absolute error, root mean square error, and Nash–Sutcliffe efficiency which compares observed and predicted inundated area as well as flood water depth simulated using the HEC-RAS model
Assessing vertical accuracy and the impact of water surface elevation from different DEM datasets
© Springer Nature Singapore Pte Ltd. 2019. Digital elevation models (DEMs) are essential to provide continuous terrain elevation for water surface elevation (WSE) with a variety of horizontal and vertical accuracies in flood inundation modelling. The WSE forecasting depends on the appropriateness of the DEM data used. The comparative methodology is applied to various DEM sources: LiDAR and IFSAR DEM based on different types of land use at each of the cross-sectional lines. The accuracy of the IFSAR DEMs was assessed with LiDAR data, which is a high-precision DEM and was applied in hydraulic modelling to simulate the WSE in Padang Terap, Kedah, Malaysia. Furthermore, Bjerklie’s model is used as predicted discharge to support the analysis. The relationship of the DEMs is established by natural logarithm (ln). Then, the equation is interpolated on the original and resampled IFSAR DEMs to improve the medium-resolution data for WSE delineation. Next, the WSE was validated with observed WSE obtained along the upstream (Kuala Nerang) to the downstream parts (Kampung Kubu) Kedah using R2, mean absolute error (MAE), and root-mean-square error (RMSE). By applying this method, the WSE can be improved by considering uncertainties and lead to produce a better flood hazard map using medium-high-resolution images