11 research outputs found

    Alternative technologies in cervical cancer screening: a randomised evaluation trial

    Get PDF
    BACKGROUND: Cervical cancer screening programmes have markedly reduced the incidence and mortality rates of the disease. A substantial amount of deaths from the disease could be prevented further by organised screening programmes or improving currently running programmes. METHODS/DESIGN: We present here a randomised evaluation trial design integrated to the Finnish cervical cancer screening programme, in order to evaluate renewal of the programme using emerging technological alternatives. The main aim of the evaluation is to assess screening effectiveness, using subsequent cancers as the outcome and screen-detected pre-cancers as surrogates. For the time being, approximately 863,000 women have been allocated to automation-assisted cytology, human papillomavirus (HPV) DNA testing, or to conventional cytology within the organised screening programme. Follow-up results on subsequent cervical cancers will become available during 2007–2015. DISCUSSION: Large-scale randomised trials are useful to clarify effectiveness and cost-effectiveness issues of the most important technological alternatives in the screening programmes for cervical cancer

    Human papillomavirus in high- and low-risk areas of oesophageal squamous cell carcinoma in China

    Get PDF
    To examine the potential roles of human papillomavirus (HPV) in oesophageal squamous cell carcinoma (ESCC) development, we examined the presence of HPV DNA in paraffin-embedded ESCC tissues collected from two areas with different ESCC incidence rates in China, that is, Gansu (n=26) and Shandong (n=33), using PCR with SPF10 primers, or PCR with GP5+/GP6+ primers combined with Southern blot hybridisation. HPV genotype was determined by the INNO-LiPA HPV genotyping kit. HPV DNA was detected in 17 cases (65%) in Gansu, where ESCC incidence is much higher than in Shandong, where HPV was positive in two samples (6%). HPV genotypes 16 and 18 were detected in 79 and 16% of HPV-positive samples, respectively. Real-time PCR analysis suggested the presence of integrated form of HPV DNA in all the HPV-16-positive samples, but its viral load was estimated to be only <1–2 copies cell−1. We could not detect HPV 16/18 E6 protein expression by immunostaining in any of the HPV-16-positive samples. Neither p16INK4a nor p53 expression was related to HPV presence in ESCCs. Further studies seem warranted to examine the possible aetiological roles of HPV in ESCC

    Precancerous Lesions of the Cervix

    No full text
    corecore