9,741 research outputs found

    Resonant Raman scattering of quantum wire in strong magnetic field

    Full text link
    The resonant Raman scattering of a quantum wire in a strong magnetic field is studied, focused on the effect of long range Coulomb interaction and the spin-charge separation. The energy-momentum dispersions of charge and spin excitation obtained from Raman cross-section show the characteristc cross-over behaviour induced by inter-edge Coulomb interaction. The "SPE" peak near resonance in polarized spectra becomes broad due to the momentum dependence of charge velocity. The broad peak in the depolarized spectra is shown to originate from the disparity between charge and spin excitation velocity.Comment: RevTex file, 6 pages, no figure: To appear in Int. Jour. Mod. Phys.

    Spin polarization amplification within nonmagnetic semiconductors at room temperature

    Full text link
    We demonstrate theoretically that the spin polarization of current can be electrically amplified within nonmagnetic semiconductors by exploiting the fact the spin current, compared to the charge current, is weakly perturbed by electric driving forces. As a specific example, we consider a T-shaped current branching geometry made entirely of a nonmagnetic semiconductor, where the current is injected into one of the branches (input branch) and splits into the other two branches (output branches). We show that when the input current has a moderate spin polarization, the spin polarization in one of the output branches can be higher than the spin polarization in the input branch and may reach 100% when the relative magnitudes of current-driving electric fields in the two output branches are properly tuned. The proposed amplification scheme does not use ferromagnets or magnetic fields, and does not require low temperature operation, providing an efficient way to generate a highly spin polarized current in nonmagnetic semiconductors at room temperature.Comment: 11 pages, 2 figures, to appear in Phys. Rev.

    X-ray edge singularity of bilayer graphene

    Full text link
    The X-ray edge singularity of bilayer graphene is studied by generalizing the path integral approach based on local action which was employed for monolayer graphene. In sharp contrast to the case of monolayer graphene, the bilayer graphene is found to exhibit the edge singularity even at half-filling and its characteristics are determined by interlayer coupling. At finite bias the singular behaviors sensitively depend on the relative magnitude of fermi energy and applied bias, which is due to the peculiar shape of energy band at finite bias.Comment: RevTeX 4.1, 4 pages. No figur

    Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy.

    Get PDF
    The rapid screening and isolation of single leukemia cells from blood has become critical for early leukemia detection and tumor heterogeneity interrogation. However, due to the size overlap between leukemia cells and the more abundant white blood cells (WBCs), the isolation and identification of leukemia cells individually from peripheral blood is extremely challenging and often requires immunolabeling or cytogenetic assays. Here we present a rapid and label-free single leukemia cell identification platform that combines: (1) high-throughput size-based separation of hemocytes via a single-cell trapping array, and (2) leukemia cell identification through phasor approach and fluorescence lifetime imaging microscopy (phasor-FLIM), to quantify changes between free/bound nicotinamide adenine dinucleotide (NADH) as an indirect measurement of metabolic alteration in living cells. The microfluidic trapping array designed with 1600 highly-packed addressable single-cell traps can simultaneously filter out red blood cells (RBCs) and trap WBCs/leukemia cells, and is compatible with low-magnification imaging and fast-speed fluorescence screening. The trapped single leukemia cells, e.g., THP-1, Jurkat and K562 cells, are distinguished from WBCs in the phasor-FLIM lifetime map, as they exhibit significant shift towards shorter fluorescence lifetime and a higher ratio of free/bound NADH compared to WBCs, because of their glycolysis-dominant metabolism for rapid proliferation. Based on a multiparametric scheme comparing the eight parameter-spectra of the phasor-FLIM signatures, spiked leukemia cells are quantitatively distinguished from normal WBCs with an area-under-the-curve (AUC) value of 1.00. Different leukemia cell lines are also quantitatively distinguished from each other with AUC values higher than 0.95, demonstrating high sensitivity and specificity for single cell analysis. The presented platform is the first to enable high-density size-based single-cell trapping simultaneously with RBC filtering and rapid label-free individual-leukemia-cell screening through non-invasive metabolic imaging. Compared to conventional biomolecular diagnostics techniques, phasor-FLIM based single-cell screening is label-free, cell-friendly, robust, and has the potential to screen blood in clinical volumes through parallelization

    The Dendritic magnetic avalanches in carbon-free MgB2_2 thin films with and without a deposited Au layer

    Full text link
    From the magneto optics images (MOI), the dendritic magnetic avalanche is known to appear dominantly for thin films of the newly discovered MgB2_2. To clarify the origin of this phenomenon, we studied in detail the MOI of carbon-free MgB2_2 thin films with and without a deposited gold layer. The MOI indicated carbon contamination was not the main source of the avalanche. The MOI clearly showed that the deposition of metallic gold deposition on top of a MgB2_2 thin film improved its thermal stability and suppressed the sudden appearance of the dendritic flux avalanche. This is consistent with the previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure

    Blandford-Znajek process as a gamma ray burst central engine

    Get PDF
    We investigate the possibility that gamma-ray bursts are powered by a central engine consisting of a black hole with an external magnetic field supported by a surrounding disk or torus. The rotational energy of the black hole can be extracted electromagnetically as a Poynting flux, a mechanism proposed by Blandford and Znajek(1977). Recently observed magnetars indicate that some compact objects have very high magnetic fields, up to 101510^{15} G, which is required to extract the energy within the duration of a GRB, i.e., in 1000 s or less. We demonstrate also that the Poynting flux need not be substantially dominated by the disk.Comment: 7 pages, no figure, paspconf.sty, to appear in Proceedings " Gamma Ray Bursts: The First Three Minutes", Gr\"aft{\aa}vallen, Sweden, Feb. 6 - 11, 199

    Spectral Broadening of Radiation from Relativistic Collapsing Objects

    Get PDF
    We study light curves and the spectral broadening of the radiation emitted during the finite interval of time by a surface of a collapsing object. We study a simplified model of monochromatic radiations from a spherical surface which is assumed to be falling freely. We discuss the possible way how to infer the physical parameters, such as the mass and radii of emission, from the light curves and spectral broadenings.Comment: 4 pages, 4 figures, Typos are corrected and substantial parts of main text are rephrased for more better presentation. 1 reference is adde

    Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling

    Full text link
    Magnetization dynamics in a ferromagnet can induce a spin-dependent electric field through spin motive force. Spin current generated by the spin-dependent electric field can in turn modify the magnetization dynamics through spin-transfer torque. While this feedback effect is usually weak and thus ignored, we predict that in Rashba spin-orbit coupling systems with large Rashba parameter αR\alpha_{\rm R}, the coupling generates the spin-dependent electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial \vec{m}/\partial t)], which can be large enough to modify the magnetization dynamics significantly. This effect should be relevant for device applications based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure

    Fermi Gamma Ray Line at 130 GeV from Axion-Mediated Dark Matter

    Full text link
    We consider a singlet Dirac fermion with Peccei-Quinn(PQ) symmetry as dark matter. A singlet complex scalar is introduced to mediate between dark matter and the SM through Higgs portal interaction and electroweak PQ anomalies. We show that a resonant annihilation of dark matter with axion mediation can explain the monochromatic photon line of the Fermi LAT data at 130 GeV by anomaly interactions while the annihilation cross section with Higgs portal interaction is p-wave suppressed. We discuss the interplay between the direct detection of the fermion dark matter and the collider search of Higgs-like scalars. We also present a ultra-violet completion of the dark matter model into the NMSSM with PQ symmetry.Comment: 22 pages, 9 figures, To be published in Phys. Rev.
    corecore