4 research outputs found

    Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Materials Science and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Science and Engineering, [VOL 30, ISSUE 7, (2010)] DOI: 10.1016/j.msec.2010.04.017

    Structure–properties relationships in fibre drawing of bioactive phosphate glasses

    Get PDF
    New bioactive phosphate glasses suitable for continuous fibre production are investigated in this work. The structure of both bulk and fibres from Na2O–CaO–MgO–P2O5 glasses has been studied by means of Raman and 31P and 23Na nuclear magnetic resonance spectroscopies, and the structural results have been correlated with the mechanical properties of the fibres and the dissolution rate of the bulk glasses. It has been observed that the mechanical properties of the phosphate glass fibres are influenced by the glass network connectivity, while the dissolution rates are governed by the Qi speciation of the PO4 units. As seen in previous studies, molar volume seems to play an important role in the fragility behaviour of phosphate glasses. Here, a lower molar volume resulting from the increase in the oxygen packing density hinders the cooperative flow of the PO4 units throughout the glass network and, therefore, causes a reduction in the kinetic fragility

    Characterisation of CorGlaes (R) Pure 107 fibres for biomedical applications

    Get PDF
    A degradable ultraphosphate (55 mol % P2O5) quinternary phosphate glass composition has been characterised in terms of its chemical, mechanical and degradation properties both as a bulk material and after drawing into fibres. This glass formulation displayed a large processing window simplifying fibre drawing. The fibres displayed stiffness and strength of 65.5 ± 20.8 GPa and 426±143 MPa. While amorphous discs of the glass displayed a linear dissolution rate of 0.004 mg cm−2 h−1 at 37 °C, in a static solution with a reduction in media pH. Once drawn into fibres, the dissolution process dropped the pH to <2 in distilled water, phosphate buffer saline and corrected-simulated body fluid, displaying an autocatalytic effect with >90 % mass loss in 4 days, about seven times faster than anticipated for this solution rate. Only cell culture media was able to buffer the pH taking over a week for full fibre dissolution, however, still four times faster dissolution rate than as a bulk material. However, at early times the development of a HCA layer was seen indicating potential bioactivity. Thus, although initial analysis indicated potential orthopaedic implant applications, autocatalysis leads to accelerating degradation in vitro
    corecore