6 research outputs found

    A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

    No full text
    Recently, unstable trinucleotide repeats have been shown to be the etiologic factor in seven neuropsychiatric diseases, and they may play a similar role in other genetic disorders which exhibit genetic anticipation. We have tested one polymerase chain reaction (PCR)-based and two hybridization-based methods for direct detection of unstable DNA expansion in genomic DNA. This technique employs a single primer (asymmetric) PCR using total genomic DNA as a template to efficiently screen for the presence of large trinucleotide repeat expansions. High-stringency Southern blot hybridization with a PCR-generated trinucleotide repeat probe allowed detection of the DNA fragment containing the expansion. Analysis of myotonic dystrophy patients containing different degrees of (CTG)n expansion demonstrated the identification of the site of trinucleotide instability in some affected individuals without any prior information regarding genetic map location. The same probe was used for fluorescent in situ hybridization and several regions of (CTG)n/(CAG)n repeats in the human genome were detected, including the myotonic dystrophy locus on chromosome 19q. Although limited at present to large trinucleotide repeat expansions, these strategies can be applied to directly clone genes involved in disorders caused by large expansions of unstable DNA. © 1996 Wiley-Liss, Inc.link_to_subscribed_fulltex

    Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study

    No full text
    In response to reported schizophrenia linkage findings on chromosomes 3, 6 and 8, fourteen research groups genotyped 14 microsatellite markers in an unbiased, collaborative (New) sample of 403-567 informative pedigrees per marker, and in the Original sample which produced each finding (the Johns Hopkins University sample of 40-52 informative pedigrees for chromosomes 3 and 8, and the Medical College of Virginia sample of 156-191 informative pedigrees for chromosome 6). Primary planned analyses (New sample) were two-point heterogeneity lod score (lod2) tests (dominant and recessive affected-only models), and multipoint affected sibling pair (ASP) analysis, with a narrow diagnostic model schizophrenia and schizoaffective disorders), Regions with positive results were also analyzed in the Original and Combined samples. There was no evidence for linkage on chromosome 3. For chromosome 6, ASP maximum lod scores (MLS) were 2.19 (New sample, nominal p = .001) and. 2.68 (Combined sample, p = .0004). For chromosome 8, maximum lod2 scores (tests of linkage with heterogeneity) were 2.22 (New sample, p = .0014) and 3.06 (Combined sample, p = .00018). Results are interpreted as inconclusive hut suggestive of linkage in the latter two regions. We discuss possible reasons for failing to achieve a conclusive result in this large sample, Design issues and limitations of this type of collaborative study are discussed, and it is concluded that multicenter follow-up linkage studies of complex disorders can help to direct research efforts toward promising regions
    corecore