1,760 research outputs found

    Non-puerperal uterine inversion due to submucous myoma in a young woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Inversion of the uterus is an uncommon complication of the puerperium and it is an even rarer complication of the non-puerperal period. A submucous myoma is mostly the cause of the non-puerperal inversion but diagnosis can be difficult. In young women, non-puerperal uterine inversion is likely associated with a malignancy.</p> <p>Case presentation</p> <p>A 19-year-old nulliparous woman presented with abnormal vaginal bleeding, dysmenorrhoea, and a large mass protruding from her cervix. The mass was interpreted as a prolapsed pedunculated submucosal myoma. After extirpation of the mass by clamping and twisting its pedicle, a laparotomy was required under suspicion of a uterine rupture. The diagnosis was confirmed and the patient's uterus could be preserved. Pathological examination revealed a submucous myoma. The uterine inversion happened when the uterus retracted to expel the submucous myoma with fundal attachment. By extirpating the stalk the fundus was also resected, causing a uterine rupture.</p> <p>Conclusion</p> <p>We report a case of non-puerperal uterine inversion associated with a benign submucous myoma. Non-puerperal uterine inversion is very uncommon in women of reproductive age and is usually caused by a malignant tumour. However, uterine-sparing surgery should be attempted in young women until the final pathology is known.</p

    Somatic LKB1 Mutations Promote Cervical Cancer Progression

    Get PDF
    Human Papilloma Virus (HPV) is the etiologic agent for cervical cancer. Yet, infection with HPV is not sufficient to cause cervical cancer, because most infected women develop transient epithelial dysplasias that spontaneously regress. Progression to invasive cancer has been attributed to diverse host factors such as immune or hormonal status, as no recurrent genetic alterations have been identified in cervical cancers. Thus, the pressing question as to the biological basis of cervical cancer progression has remained unresolved, hampering the development of novel therapies and prognostic tests. Here we show that at least 20% of cervical cancers harbor somatically-acquired mutations in the LKB1 tumor suppressor. Approximately one-half of tumors with mutations harbored single nucleotide substitutions or microdeletions identifiable by exon sequencing, while the other half harbored larger monoallelic or biallelic deletions detectable by multiplex ligation probe amplification (MLPA). Biallelic mutations were identified in most cervical cancer cell lines; HeLa, the first human cell line, harbors a homozygous 25 kb deletion that occurred in vivo. LKB1 inactivation in primary tumors was associated with accelerated disease progression. Median survival was only 13 months for patients with LKB1-deficient tumors, but >100 months for patients with LKB1-wild type tumors (P = 0.015, log rank test; hazard ratio = 0.25, 95% CI = 0.083 to 0.77). LKB1 is thus a major cervical tumor suppressor, demonstrating that acquired genetic alterations drive progression of HPV-induced dysplasias to invasive, lethal cancers. Furthermore, LKB1 status can be exploited clinically to predict disease recurrence

    Effects of luteectomy in early pregnancy on the maintenance of gestation and plasma progesterone concentrations in the viviparous temperate lizard Barisia imbricata imbricata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that the corpus luteum is the principal source of progesterone during the gravidity period in reptiles; however, its participation in the maintenance of gestation in the viviparous squamata is in dispute. The effects of ovariectomy or luteectomy vary according to the species and the time at which the procedure is performed. In this paper, we describe the effects of luteectomy during early pregnancy on the maintenance of gestation and progesterone concentrations in the temperate Mexican viviparous lizard <it>Barisia imbricata imbricata.</it></p> <p>Methods</p> <p>Twenty-four lizards were subjected to three different treatments: luteectomy, sham luteectomy or non-surgical treatment, and blood samples were obtained before and after surgical treatment at different stages of gestation to determine the effects of luteectomy on the maintenance of gestation and progesterone concentrations.</p> <p>Results</p> <p>Spontaneous abortion was not observed in any of the females. However, luteectomy provoked abnormal parturition and a significant reduction in the number of young born alive. Parturition was normal in untreated females as well as those submitted to sham luteectomy. The surgical treatment also caused a significant reduction in progesterone concentrations in luteectomised females during early and middle gestation. However, no significant differences in hormone concentrations were observed among the three groups during late gestation or immediately post-parturition.</p> <p>Conclusions</p> <p>Our observations indicate that the presence of the corpus luteum is not necesary for the maintenance of gestation, but that it does participate in parturition control. Moreover, the corpus luteum of the viviparous lizard <it>B. i. imbricata</it> produces progesterone, at least during the first half of pregnancy, and that an extra-ovarian source of progesterone must maintain gestation in the absence of luteal tissue.</p

    Dynamics of Rye Chromosome 1R Regions with High or Low Crossover Frequency in Homology Search and Synapsis Development

    Get PDF
    In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis

    Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience

    Get PDF
    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later

    Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM)

    Get PDF
    We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study

    Cytotoxic T lymphocytes that recognize decameric peptide sequences of retinoblastoma binding protein 1 (RBP-1) associated with human breast cancer

    Get PDF
    Retinoblastoma binding protein 1 (RBP-1) is a 143-kDa nuclear phosphoprotein that promotes cell growth by inhibiting the product of retinoblastoma tumour suppressor gene (pRB). We recently found that RBP-1 contains KASIFLK, a heptameric peptide (250–256) recognized by human antibodies and overexpressed by breast cancer cells. In the present study, we demonstrate that human T-cells stimulated with RBP-1 decameric peptides containing KASIFLK can kill human breast cancer cells. These decamers, GLQKASIFLK (247–256) and KASIFLKTRV (250–259), have anchor motifs for both HLA-A2 and HLA-A3. Peripheral blood lymphocytes from 41 normal donors were stimulated by these peptides in culture media containing 15 IU ml−1 interleukin-2, 25 IU ml−1 interleukin-7 and 500 IU ml−1 granulocyte–macrophage colony-stimulating factor. Cytotoxic activity of the T-cells was assessed against autologous B lymphoblastoid cells pulsed with each peptide. Stimulation by GLQKASIFLK generated specific cytotoxic T lymphocyte (CTL) lines from HLA-A2, A3 donors, HLA-A2 donors and HLA-A3 donors. Stimulation with KASIFLKTRV generated specific CTL lines from HLA-A2 donors. No HLA-A2−, A3− CTL line showed specific cytotoxicity against these target cells. These CTL lines were also cytotoxic against HLA-A2 and HLA-A3 breast cancer cells but not against normal fibroblastoid cell lines, normal epidermal cell lines, or a melanoma cell line. RBP-1 peptide antigens may be of clinical significance as a potential peptide vaccine against human breast cancer. © 1999 Cancer Research Campaig
    corecore