17 research outputs found

    Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms

    Get PDF
    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44+ cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many “stemness” genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44+ tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms

    The Impact of Social Disparity on Prefrontal Function in Childhood

    Get PDF
    The prefrontal cortex (PFC) develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES) and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children
    corecore