1,551 research outputs found

    Neutralisation of SARS-CoV-2 by monoclonal antibody through dual targeting powder formulation

    Get PDF
    Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 ΞΌm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 ΞΌm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks

    Hydrogen-induced modifications of electrical properties of insulating ferrites

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Parameterized Complexity of Maximum Edge Colorable Subgraph

    Full text link
    A graph HH is {\em pp-edge colorable} if there is a coloring ψ:E(H)β†’{1,2,…,p}\psi: E(H) \rightarrow \{1,2,\dots,p\}, such that for distinct uv,vw∈E(H)uv, vw \in E(H), we have ψ(uv)β‰ Οˆ(vw)\psi(uv) \neq \psi(vw). The {\sc Maximum Edge-Colorable Subgraph} problem takes as input a graph GG and integers ll and pp, and the objective is to find a subgraph HH of GG and a pp-edge-coloring of HH, such that ∣E(H)∣β‰₯l|E(H)| \geq l. We study the above problem from the viewpoint of Parameterized Complexity. We obtain \FPT\ algorithms when parameterized by: (1)(1) the vertex cover number of GG, by using {\sc Integer Linear Programming}, and (2)(2) ll, a randomized algorithm via a reduction to \textsc{Rainbow Matching}, and a deterministic algorithm by using color coding, and divide and color. With respect to the parameters p+kp+k, where kk is one of the following: (1)(1) the solution size, ll, (2)(2) the vertex cover number of GG, and (3)(3) l - {\mm}(G), where {\mm}(G) is the size of a maximum matching in GG; we show that the (decision version of the) problem admits a kernel with O(kβ‹…p)\mathcal{O}(k \cdot p) vertices. Furthermore, we show that there is no kernel of size O(k1βˆ’Ο΅β‹…f(p))\mathcal{O}(k^{1-\epsilon} \cdot f(p)), for any Ο΅>0\epsilon > 0 and computable function ff, unless \NP \subseteq \CONPpoly

    Acute lyme infection presenting with amyopathic dermatomyositis and rapidly fatal interstitial pulmonary fibrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Dermatomyositis has been described in the setting of lyme infection in only nine previous case reports. Although lyme disease is known to induce typical clinical findings that are observed in various collagen vascular diseases, to our knowledge, we believe that our case is the first presentation of acute lyme disease associated with amyopathic dermatomyositis, which was then followed by severe and fatal interstitial pulmonary fibrosis only two months later.</p> <p>Case presentation</p> <p>We present a case of a 64-year-old African-American man with multiple medical problems who was diagnosed with acute lyme infection after presenting with the pathognomonic rash and confirmatory serology. In spite of appropriate antimicrobial therapy for lyme infection, he developed unexpected amyopathic dermatomyositis and then interstitial lung disease.</p> <p>Conclusions</p> <p>This case illustrates a potential for lyme disease to produce clinical syndromes that may be indistinguishable from primary connective tissue diseases. An atypical and sequential presentation (dermatomyositis and interstitial lung disease) of a common disease (lyme infection) is discussed. This case illustrates that in patients who are diagnosed with lyme infection who subsequently develop atypical muscular, respiratory or other systemic complaints, the possibility of severe rheumatological and pulmonary complications should be considered.</p

    Identifying the structure of Zn-N-2 active sites and structural activation

    Get PDF
    Identification of active sites is one of the main obstacles to rational design of catalysts for diverse applications. Fundamental insight into the identification of the structure of active sites and structural contributions for catalytic performance are still lacking. Recently, X-ray absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools to disclose the electronic, geometric and catalytic natures of active sites. Herein, we demonstrate the structural identification of Zn-N-2 active sites with both experimental/theoretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation on Zn-N-2 active sites is significantly enhanced, which can accelerate the reduction of oxygen with high selectivity, according well with the experimental results. This work highlights the identification and investigation of Zn-N-2 active sites, providing a regular principle to obtain deep insight into the nature of catalysts for various catalytic applications

    Effect of sampling effort and sampling frequency on the composition of the planktonic crustacean assemblage: a case study of the river Danube

    Get PDF
    Although numerous studies have focused on the seasonal dynamics of riverine zooplankton, little is known about its short-term variation. In order to examine the effects of sampling frequency and sampling effort, microcrustacean samples were collected at daily intervals between 13 June and 21 July of 2007 in a parapotamal side arm of the river Danube, Hungary. Samples were also taken at biweekly intervals from November 2006 to May 2008. After presenting the community dynamics, the effect of sampling effort was evaluated with two different methods; the minimal sample size was also estimated. We introduced a single index (potential dynamic information loss; to determine the potential loss of information when sampling frequency is reduced. The formula was calculated for the total abundance, densities of the dominant taxa, adult/larva ratios of copepods and for two different diversity measures. Results suggest that abundances may experience notable fluctuations even within 1 week, as do diversities and adult/larva ratios

    OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Today, data evaluation has become a bottleneck in chromatographic science. Analytical instruments equipped with automated samplers yield large amounts of measurement data, which needs to be verified and analyzed. Since nearly every GC/MS instrument vendor offers its own data format and software tools, the consequences are problems with data exchange and a lack of comparability between the analytical results. To challenge this situation a number of either commercial or non-profit software applications have been developed. These applications provide functionalities to import and analyze several data formats but have shortcomings in terms of the transparency of the implemented analytical algorithms and/or are restricted to a specific computer platform.</p> <p>Results</p> <p>This work describes a native approach to handle chromatographic data files. The approach can be extended in its functionality such as facilities to detect baselines, to detect, integrate and identify peaks and to compare mass spectra, as well as the ability to internationalize the application. Additionally, filters can be applied on the chromatographic data to enhance its quality, for example to remove background and noise. Extended operations like do, undo and redo are supported.</p> <p>Conclusions</p> <p>OpenChrom is a software application to edit and analyze mass spectrometric chromatographic data. It is extensible in many different ways, depending on the demands of the users or the analytical procedures and algorithms. It offers a customizable graphical user interface. The software is independent of the operating system, due to the fact that the Rich Client Platform is written in Java. OpenChrom is released under the Eclipse Public License 1.0 (EPL). There are no license constraints regarding extensions. They can be published using open source as well as proprietary licenses. OpenChrom is available free of charge at <url>http://www.openchrom.net</url>.</p

    Do Twin Boundaries Always Strengthen Metal Nanowires?

    Get PDF
    It has been widely reported that twin boundaries strengthen nanowires regardless of their morphologyβ€”that is, the strength of nanowires goes up as twin spacing goes down. This article shows that twin boundaries do not always strengthen nanowires. Using classical molecular dynamics simulations, the authors show that whether twin boundaries strengthen nanowires depends on the necessary stress for dislocation nucleation, which in turn depends on surface morphologies. When nanowires are circular cylindrical, the necessary stress of dislocation nucleation is high and the presence of twin boundaries lowers this stress; twin boundaries soften nanowires. In contrast, when nanowires are square cylindrical, the necessary stress of dislocation nucleation is low, and a higher stress is required for dislocations to penetrate twin boundaries; they strengthen nanowires

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
    • …
    corecore