5 research outputs found

    Ribavirin-Induced Anemia in Hepatitis C Virus Patients Undergoing Combination Therapy

    Get PDF
    The current standard of care for hepatitis C virus (HCV) infection – combination therapy with pegylated interferon and ribavirin – elicits sustained responses in only ∼50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects

    Hydrogels for directed stem cell differentiation and tissue repair

    No full text
    Thanks to their tunable physical and biochemical properties, hydrogels are an attractive tool for tissue engineering applications. This review highlights the design parameters that have been shown to influence stem cell behaviour when cultured on or within hydrogels and presents the various types of materials and crosslinking methods currently used to produce hydrogels suitable for stem cell-based tissue engineering. We also focus on new generations of hydrogels with spatially and dynamically controllable physical and biochemical properties, which open up new perspectives in the study of stem cell behaviour and in the development of therapeutic solutions in regenerative medicine. In line with the current need for more tunable and dynamic properties, polyrotaxane hydrogels can be used to create spatially flexible structures at the molecular scale and are therefore emerging as a new player in the field of tissue engineering

    The ETS family of oncogenic transcription factors in solid tumours

    No full text

    Hydrogel microparticles for biomedical applications

    No full text
    corecore