140 research outputs found
Optic Nerve Head Change in Non-Arteritic Anterior Ischemic Optic Neuropathy and Its Influence on Visual Outcome
To evaluate changes in cup/disc (C/D) diameter ratios and parapapillary atrophy in patients with non-arteritic anterior ischemic optic neuropathy (NA-AION), using morphometric methods.The clinical non-interventional study included 157 patients with unilateral or bilateral NA-AION. Optic disc photographs taken from both eyes at the end of follow-up were morphometrically examined.Follow-up was 86.3±70.3 months. Horizontal and vertical disc diameters (P = 0.30;P = 0.61, respectively), horizontal and vertical C/D ratios (P = 0.47;P = 0.19,resp.), and size of alpha zone and beta zone of parapapillary atrophy (P = 0.27;P = 0.32,resp.) did not differ significantly between affected eyes and contralateral normal eyes in patients with unilateral NA-AION. Similarly, horizontal and vertical disc diameters, horizontal and vertical C/D ratios, and size of alpha zone and beta zone did not vary significantly (all P>0.05) between the unaffected eyes of patients with unilateral NA-AION and the eyes of patients with bilateral NA-AION. Optic disc diameters, C/D ratios, size of alpha zone or beta zone of parapapillary atrophy were not significantly associated with final visual outcome in the eyes affected with NA-AION (all P>0.20) nor with the difference in final visual acuity between affected eyes and unaffected eyes in patients with unilateral NA-AION (all P>0.25).NA-AION did not affect C/D ratios nor alpha zone and beta zone of parapapillary atrophy. Optic disc size was not related to the final visual acuity outcome in NA-AION
Unilateral optic neuropathy following subdural hematoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Unilateral optic neuropathy is commonly due to a prechiasmatic affliction of the anterior visual pathway, while losses in visual hemifields result from the damage to brain hemispheres. Here we report the unusual case of a patient who suffered from acute optic neuropathy following hemispherical subdural hematoma. Although confirmed up to now only through necropsy studies, our case strongly suggests a local, microcirculatory deficit identified through magnetic resonance imaging <it>in vivo</it>.</p> <p>Case presentation</p> <p>A 70-year-old Caucasian German who developed a massive left hemispheric subdural hematoma under oral anticoagulation presented with acute, severe visual impairment on his left eye, which was noticed after surgical decompression. Neurologic and ophthalmologic examinations indicated sinistral optic neuropathy with visual acuity reduced nearly to amaurosis. Ocular pathology such as vitreous body hemorrhage, papilledema, and central retinal artery occlusion were excluded. An orbital lesion was ruled out by means of orbital magnetic resonance imaging. However, cerebral diffusion-weighted imaging and T2 maps of magnetic resonance imaging revealed a circumscribed ischemic lesion within the edematous, slightly herniated temporomesial lobe within the immediate vicinity of the affected optic nerve. Thus, the clinical course and morphologic magnetic resonance imaging findings suggest the occurrence of pressure-induced posterior ischemic optic neuropathy due to microcirculatory compromise.</p> <p>Conclusion</p> <p>Although lesions of the second cranial nerve following subdural hematoma have been reported individually, their pathogenesis was preferentially proposed from autopsy studies. Here we discuss a dual, pressure-induced and secondarily ischemic pathomechanism on the base of <it>in vivo </it>magnetic resonance imaging diagnostics which may remain unconsidered by computed tomography.</p
Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease
Alzheimer’s disease (AD) is one of the most common causes of dementia in the world. Patients with AD frequently complain of vision disturbances that do not manifest as changes in routine ophthalmological examination findings. The main causes of these disturbances are neuropathological changes in the visual cortex, although abnormalities in the retina and optic nerve cannot be excluded. Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) tests are commonly used in ophthalmology to estimate bioelectrical function of the retina and optic nerve. The aim of this study was to determine whether retinal and optic nerve function, measured by PERG and PVEP tests, is changed in individuals in the early stages of AD with normal routine ophthalmological examination results. Standard PERG and PVEP tests were performed in 30 eyes of 30 patients with the early stages of AD. The results were compared to 30 eyes of 30 normal healthy controls. PERG and PVEP tests were recorded in accordance with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Additionally, neural conduction was measured using retinocortical time (RCT)—the difference between P100-wave latency in PVEP and P50-wave implicit time in PERG. In PERG test, PVEP test, and RCT, statistically significant changes were detected. In PERG examination, increased implicit time of P50-wave (P < 0.03) and amplitudes reductions in P50- and N95-waves (P < 0.0001) were observed. In PVEP examination, increased latency of P100-wave (P < 0.0001) was found. A significant increase in RCT (P < 0.0001) was observed. The most prevalent features were amplitude reduction in N95-wave and increased latency of P100-wave which were seen in 56.7% (17/30) of the AD eyes. In patients with the early stages of AD and normal routine ophthalmological examination results, dysfunction of the retinal ganglion cells as well as of the optic nerve is present, as detected by PERG and PVEP tests. These dysfunctions, at least partially, explain the cause of visual disturbances observed in patients with the early stages of AD
Current practice of trabeculectomy in a cohort of experienced glaucoma surgeons in Australia and New Zealand
Background/Objectives: To evaluate current routine trabeculectomy technique preferences among Australian and New Zealand Glaucoma Society surgeons regularly performing trabeculectomy surgery. Subjects/Methods: Survey of experienced surgeons who perform trabeculectomy. Results: Forty-nine surgeons (33 male:16 female) participated in the survey. Trabeculectomy was performed as day surgery (39/47, 83.0%) under local anesthesia (44/47, 93.6%). The surgical techniques most commonly used were a corneal traction suture (44/47, 93.6%), fornix-based conjunctival flap (43/47, 91.5%) and half-thickness scleral flap (38/47, 81.0%). Mitomycin C antifibrotic agent was used in routine cases by 45/46 (97.8%) surgeons. Surgeons applied the antifibrotic agent under the Tenon layer with a pledget (36/46, 78.2%) with a concentration of 0.02% (37/46, 80.4%) for 2 (11/46, 23.9%) or 3 min (30/46, 65.2%). The Kelly (26/46, 56.5%) and the Khaw Descemet (19/46, 41.3%) punches were used to perform the sclerostomy. Most surgeons performed a peripheral iridectomy in all phakic patients (46/47, 97.9%), but less commonly in pseudophakic patients (34/47, 72.3%). Techniques for closure of the limbal conjunctival edge were quite varied with a combination of suturing including purse string (21/47, 57.4%), wing (20/47, 42.6%) and horizontal mattress sutures (33/47, 70.2%). Surgeons reviewed their routine patients four times in the first month (29/47, 61.7%) and continued the postoperative topical steroids for 3–4 months (28/47, 59.6%). Conclusions: Although a wide range of techniques for trabeculectomy exists among surgeons, there are consistent procedures currently in use to optimize patient outcomes. This report will assist surgeons in choosing which surgical techniques fit their best practice
Amyloid Precursor Protein Is Required for Normal Function of the Rod and Cone Pathways in the Mouse Retina
Amyloid precursor protein (APP) is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO) mice identified an important role for APP in modulating normal neuronal development in the retina. However the role APP plays in the adult retina and whether it is required for vision is unknown. In this study we evaluated the role of APP in retinal function and morphology comparing adult wildtype (WT) and APP-KO mice. APP was expressed on neuronal cells of the inner retina, including horizontal, cone bipolar, amacrine and ganglion cells in WT mice. The function of the retina was assessed using the electroretinogram and although the rod photoreceptor responses were similar in APP-KO and WT mice, the post-photoreceptor, inner retinal responses of both the rod and cone pathways were reduced in APP-KO mice. These changes in inner retinal function did not translate to a substantial change in visual acuity as assessed using the optokinetic response or to changes in the gross cellular structure of the retina. These findings indicate that APP is not required for basic visual function, but that it is involved in modulating inner retinal circuitry
Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo
Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio
- …