2,730 research outputs found

    High Latitude Radio Emission in a Sample of Edge-On Spiral Galaxies

    Get PDF
    We have mapped 16 edge-on galaxies at 20 cm using the VLA. For 5 galaxies, we could form spectral index, energy and magnetic field maps. We find that all but one galaxy show evidence for non-thermal high latitude radio continuum emission, suggesting that cosmic ray halos are common in star forming galaxies. The high latitude emission is seen over a variety of spatial scales and in discrete and/or smooth features. In general, the discrete features emanate from the disk, but estimates of CR diffusion lengths suggest that diffusion alone is insufficient to transport the particles to the high latitudes seen (> 15 kpc in one case). Thus CRs likely diffuse through low density regions and/or are assisted by other mechanisms (e.g. winds). We searched for correlations between the prevalence of high latitude radio emission and a number of other properties, including the global SFR, supernova input rate per unit star forming, and do not find clear correlations with any of these properties.Comment: 40 pages of text, 3 figures, 6 tables, and an appendix of 21 jpeg figures (which is a radio continuum catalogue of 17 galaxies). to appear in A. J. (around January 1999

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Tidally Triggered Star Formation in Close Pairs of Galaxies: Major and Minor Interactions

    Full text link
    We study star formation in a sample of 345 galaxies in 167 pairs and compact groups drawn from the original CfA2 Redshift Survey and from a follow-up search for companions. We construct our sample with attention to including pairs with luminosity contrast |\Delta m_R| >= 2. These 57 galaxies with |\Delta m_R| >= 2 provide a set of nearby representative cases of minor interactions, a central feature of the hierarchical galaxy formation model. Here we report the redshifts and positions of the 345 galaxies in our sample, and of 136 galaxies in apparent pairs that are superpositions. In the pairs sample as a whole, there are strong correlations between the equivalent width of the H\alpha emission line and the projected spatial and the line-of-sight velocity separation of the pair. For pairs of small luminosity contrast, |\Delta m_R| < 2, the member galaxies show a correlation between the equivalent width of H\alpha and the projected spatial separation of the pair. However, for pairs with large luminosity contrast, |\Delta m_R| >= 2, we detect no correlation between the equivalent width of H\alpha and the projected spatial separation. The relative luminosity of the companion galaxy is more important in a gravitational tidal interaction than the intrinsic luminosity of the galaxy. Central star formation across the entire pairs sample depends strongly on the luminosity ratio, |\Delta m_R|, a reasonable proxy for the mass ratio of the pair; pairs composed of similarly luminous galaxies produce the strongest bursts of star formation. Pairs with |\Delta m_R| >= 2 rarely have EW(H\alpha) >~ 70 Ang.Comment: Minor revisions following journal proof

    Induced star formation in interacting galaxies

    Get PDF
    Measurements of H alpha emission line fluxes and FIR fluxes in approx. 100 interacting spirals were used to investigate the effects of close tidal interactions on the disk and nuclear star formation rates in galaxies. Two samples of interacting spirals were studied, a complete sample of close pairs, and a set of strongly perturbed systems from the Arp atlas. Both the integrated H alpha luminosities and FIR luminosities are enhanced in the interacting galaxies, indicating that the encounters indeed trigger massive star formation in many cases. The response of individual galaxies is highly variable, however. A majority of the interacting spirals exhibit normal star formation rates, while a small fraction are undergoing bursts with luminosities which are rarely, if ever, observed in noninteracting systems. Virtually all of the latter are in the Arp sample, indicating that the Arp atlas is heavily biased to the most active star forming systems

    Electromagnetic Scattering from Relativistic Bound States

    Get PDF
    The quasipotential formalism for elastic scattering from relativistic bound states is formulated based on the instant constraint in the Breit frame. The quasipotential electromagnetic current is derived from Mandelstam's five-point kernel and obeys a two-body Ward identity. Breit-frame wave functions are obtained directly by solving integral equations with nonzero total three-momentum, thus accomplishing a dynamical boost. Calculations of electron-deuteron elastic form factors illustrate the importance of the dynamical boost versus kinematic boosts of the rest frame wave functions.Comment: RevTeX 3.0 manuscript, 9 pages. UU-file is a single PostScript file of the manuscript including figures. U. MD PP #93-17

    Tidally-Triggered Star Formation in Close Pairs of Galaxies

    Full text link
    We analyze new optical spectra of a sample of 502 galaxies in close pairs and n-tuples, separated by <= 50/h kpc. We extracted the sample objectively from the CfA2 redshift survey, without regard to the surroundings of the tight systems. We probe the relationship between star formation and the dynamics of the systems of galaxies. The equivalent widths of H\alpha (EW(H\alpha) and other emission lines anti-correlate strongly with pair spatial separation (\Delta D) and velocity separation. We use the measured EW(H\alpha) and the starburst models of Leitherer et al. to estimate the time since the most recent burst of star for- mation began for each galaxy. In the absence of a large contribution from an old stellar population to the continuum around H\alpha, the observed \Delta D -- EW(H\alpha) correlation signifies that starbursts with larger separations on the sky are, on average, older. By matching the dynamical timescale to the burst timescale, we show that the data support a simple picture in which a close pass initiates a starburst; EW(H\alpha) decreases with time as the pair separation increases, accounting for the anti-correlation. This picture leads to a method for measuring the duration and the initial mass function of interaction-induced starbursts: our data are compatible with the starburst and orbit models in many respects, as long as the starburst lasts longer than \sim10^8 years and the delay between the close pass and the initiation of the starburst is less than a few \times 10^7 years. If there is no large contribution from an old stellar population to the continuum around H\alpha the Miller-Scalo and cutoff (M <= 30 M_\sun) Salpeter initial mass functions fit the data much better than a standard Salpeter IMF. (Abridged.)Comment: 43 pages, 22 figures, to appear in the ApJ; we correct an error which had minor effects on numerical values in the pape

    OVI Emission in the Halos of Edge-on Spiral Galaxies

    Get PDF
    We have used the Far Ultraviolet Spectroscopic Explorer to search for OVI 1031.926, 1037.617 A emission in the halos of the edge-on spiral galaxies NGC4631 and NGC891. In NGC4631, we detected OVI in emission toward a soft X-ray bubble above a region containing numerous Halpha arcs and filaments. The line-of-sight component of the motion of the OVI gas appears to match the underlying disk rotation. The observed OVI luminosities can account for 0.2-2% of the total energy input from supernovae (assuming a full OVI emitting halo) and yield mass flux cooling rates between 0.48 and 2.8 M_sun/yr depending on the model used in the derivations. Based on these findings, we believe it is likely that we are seeing cooling, galactic fountain gas. No emission was detected from the halo of NGC891, a galaxy in a direction with considerably high foreground Galactic extinction.Comment: accepted for publication in ApJ, 16 pages including 4 figure

    The Nature of Composite LINER/HII Galaxies, As Revealed from High-Resolution VLA Observations

    Get PDF
    A sample of 37 nearby galaxies displaying composite LINER/HII and pure HII spectra was observed with the VLA in an investigation of the nature of their weak radio emission. The resulting radio contour maps overlaid on optical galaxy images are presented here, together with an extensive literature list and discussion of the individual galaxies. Radio morphological data permit assessment of the ``classical AGN'' contribution to the global activity observed in these ``transition'' LINER galaxies. One in five of the latter objects display clear AGN characteristics: these occur exclusively in bulge-dominated hosts.Comment: 31 pages, 27 figures, accepted by ApJ

    The X-ray nebula around the Seyfert 2 galaxy NGC4388

    Full text link
    We report on X-ray emission from the Seyfert 2 galaxy NGC4388 observed with the Chandra X-ray Observatory. A hard X-ray peak is found at the position of the active nucleus suggested by optical and radio observations. Extended soft X-ray emission correlates well with the ionization cone found in optical line emission. A large soft X-ray extension is found up to 16 kpc to the north of the galaxy. Photoionized gas with low ionization parameters (xi<3) appears to be the likely explanation of this emission. The same ionized gas clouds could be responsible for the optical [OIII] emission. Fe K line emission from cold material is found to be extended by a few kpc.Comment: 12 pages, one colour figure included, MNRAS in pres

    Interferometric 12CO(J=2-1) image of the Nuclear Region of Seyfert 1 Galaxy NGC 1097

    Full text link
    We have mapped the central region of the Seyfert 1 galaxy NGC 1097 in 12CO(J=2-1) with the Submillieter Array (SMA). The 12CO(J=2-1) map shows a central concentration and a surrounding ring, which coincide respectively with the Seyfert nucleus and a starburst ring. The line intensity peaks at the nucleus, whereas in a previously published 12CO(J=1-0) map the intensity peaks at the starburst ring. The molecular ring has an azimuthally averaged 12CO(J=2-1)/(J=1-0) intensity ratio (R21) of about unity, which is similar to those in nearby active star forming galaxies, suggesting that most of the molecular mass in the ring is involved in fueling the starburst. The molecular gas can last for only about 1.2\times10^8 years without further replenishment assuming a constant star formation rate and a perfect conversion of gas to stars. The velocity map shows that the central molecular gas is rotating with the molecular ring in the same direction, while its velocity gradient is much steeper than that of the ring. This velocity gradient of the central gas is similar to what is usually observed in some Seyfert 2 galaxies. To view the active nucleus directly in the optical, the central molecular gas structure can either be a low-inclined disk or torus but not too low to be less massive than the mass of the host galaxy itself, be a highly-inclined thin disk or clumpy and thick torus, or be an inner part of the galactic disk. The R21 value of ~1.9 of the central molecular gas component, which is significantly higher than the value found at the molecular gas ring, indicates that the activity of the Seyfert nucleus may have a significant influence on the conditions of the molecular gas in the central component.Comment: 22 pages, 4 figures, accepted by Ap
    • 

    corecore