71 research outputs found
Simple approach to approximate quantum error correction based on the transpose channel
We demonstrate that there exists a universal, near-optimal recovery map—the transpose channel—for approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using the transpose channel, we provide an alternative interpretation of the standard quantum error correction (QEC) conditions and generalize them to a set of conditions for approximate QEC (AQEC) codes. This forms the basis of a simple algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work relying on exhaustive numerical search for the optimal recovery map, with optimality defined based on entanglement fidelity. For the practically useful case of codes encoding a single qubit of information, our algorithm is particularly easy to implement
Combining dynamical decoupling with fault-tolerant quantum computation
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise and have a lower overhead cost than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer and can be expressed either in terms of the operator norm of the bath’s Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations
Implementing a neutral-atom controlled-phase gate with a single Rydberg pulse
One can implement fast two-qubit entangling gates by exploiting the Rydberg
blockade. Although various theoretical schemes have been proposed,
experimenters have not yet been able to demonstrate two-atom gates of high
fidelity due to experimental constraints. We propose a novel scheme, which only
uses a single Rydberg pulse illuminating both atoms, for the construction of
neutral-atom controlled-phase gates. In contrast to the existing schemes, our
approach is simpler to implement and requires neither individual addressing of
atoms nor adiabatic procedures. With parameters estimated based on actual
experimental scenarios, a gate fidelity higher than 0.99 is achievable.Comment: 6 pages, 5 figure
A simple minimax estimator for quantum states
Quantum tomography requires repeated measurements of many copies of the
physical system, all prepared by a source in the unknown state. In the limit of
very many copies measured, the often-used maximum-likelihood (ML) method for
converting the gathered data into an estimate of the state works very well. For
smaller data sets, however, it often suffers from problems of rank deficiency
in the estimated state. For many systems of relevance for quantum information
processing, the preparation of a very large number of copies of the same
quantum state is still a technological challenge, which motivates us to look
for estimation strategies that perform well even when there is not much data.
In this article, we review the concept of minimax state estimation, and use
minimax ideas to construct a simple estimator for quantum states. We
demonstrate that, for the case of tomography of a single qubit, our estimator
significantly outperforms the ML estimator for small number of copies of the
state measured. Our estimator is always full-rank, and furthermore, has a
natural dependence on the number of copies measured, which is missing in the ML
estimator.Comment: 26 pages, 3 figures. v2 contains minor improvements to the text, and
an additional appendix on symmetric measurement
- …