277 research outputs found

    Motivation for Two Detectors at a Particle Physics Collider

    Full text link
    It is generally accepted that it is preferable to build two general purpose detectors at any given collider facility. We reinforce this point by discussing a number of aspects and particular instances in which this has been important. The examples are taken mainly, but not exclusively, from experience at the Tevatron collider.Comment: 12 pages, 11 figure

    Real quadratic fields with large class number

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46217/1/208_2005_Article_BF01351721.pd

    Cardiopulmonary exercise testing before and after intravenous iron in preoperative patients: a prospective clinical study

    Get PDF
    Background: Anemia is associated with impaired physical performance and adverse perioperative outcomes. Iron-deficiency anemia is increasingly treated with intravenous iron before elective surgery. We explored the relationship between exercise capacity, anemia, and total hemoglobin mass (tHb-mass) and the response to intravenous iron in anemic patients prior to surgery.// Methods: A prospective clinical study was undertaken in patients having routine cardiopulmonary exercise testing (CPET) with a hemoglobin concentration ([Hb]) < 130 g.l⁻¹ and iron deficiency/depletion. Patients underwent CPET and tHb-mass measurements before and a minimum of 14 days after receiving intravenous (i.v.) Ferric derisomaltose (Monofer®) at the baseline visit. Comparative analysis of hematological and CPET variables was performed pre and post-iron treatment.// Results: Twenty-six subjects were recruited, of whom 6 withdrew prior to study completion. The remaining 20 (9 [45%] male; mean ± SD age 68 ± 10 years) were assessed 25 ± 7 days between baseline and the final visit. Following i.v. iron, increases were seen in [Hb] (mean ± SD) from 109 ± 14 to 116 ± 12 g l⁻¹ (mean rise 6.4% or 7.3 g l⁻¹, p =  < 0.0001, 95% CI 4.5–10.1); tHb-mass from 497 ± 134 to 546 ± 139 g (mean rise 9.3% or 49 g, p =  < 0.0001, 95% CI 29.4–69.2). Oxygen consumption at anerobic threshold (V˙O2 AT) did not change (9.1 ± 1.7 to 9.8 ± 2.5 ml kg⁻¹ min⁻¹, p = 0.09, 95% CI − 0.13 − 1.3). Peak oxygen consumption (V˙O2 peak) increased from 15.2 ± 4.1 to 16 ± 4.4 ml.kg.⁻¹ min⁻¹, p = 0.02, 95% CI 0.2–1.8) and peak work rate increased from 93 [67–112] watts to 96 [68–122] watts (p = 0.02, 95% CI 1.3–10.8).// Conclusion: Preoperative administration of intravenous iron to iron-deficient/deplete anemic patients is associated with increases in [Hb], tHb-mass, peak oxygen consumption, and peak work rate. Further appropriately powered prospective studies are required to ascertain whether improvements in tHb-mass and performance in turn lead to reductions in perioperative morbidity

    Electrocardiographic (ECG) criteria for determining left ventricular mass in young healthy men; data from the LARGE Heart study

    Get PDF
    Background: Doubts remain over the use of the ECG in identifying those with increased left ventricular (LV) mass. This is especially so in young individuals, despite their high prevalence of ECG criteria for LV hypertrophy. We performed a study using cardiovascular magnetic resonance (CMR), which provides an in vivo non-invasive gold standard method of measuring LV mass, allowing accurate assessment of electrocardiography as a tool for defining LV hypertrophy in the young.Methods and results: Standard 12-lead ECGs were obtained from 101 Caucasian male army recruits aged (mean +/- SEM) 19.7 +/- 0.2 years. LV mass was measured using CMR. LV mass indexed to body surface area demonstrated no significant correlation with the Cornell Amplitude criteria or Cornell Product for LV hypertrophy. Moderate correlations were seen with the Sokolow-Lyon Amplitude (0.28) and Sokolow-Lyon Product (0.284). Defining LV hypertrophy as a body surface area indexed left ventricular mass of 93 g/m(2), calculated sensitivities [and specificities] were as follows; 38.7% [74.3%] for the Sokolow-Lyon criteria, 43.4% [61.4%] for the Sokolow-Lyon Product, 19.4% [91.4%] for Cornell Amplitude, and 22.6% [85.7%] for Cornell Product. These values are substantially less than those reported for older age groups.Conclusion: ECG criteria for LV hypertrophy may have little value in determining LV mass or the presence of LV hypertrophy in young fit males

    Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp.

    Get PDF
    At high altitude oxygen delivery to the tissues is impaired leading to oxygen insufficiency (hypoxia). Acclimatisation requires adjustment to tissue metabolism, the details of which remain incompletely understood. Here, metabolic responses to progressive environmental hypoxia were assessed through metabolomic and lipidomic profiling of human plasma taken from 198 human participants before and during an ascent to Everest Base Camp (5,300 m). Aqueous and lipid fractions of plasma were separated and analysed using proton (1H)-nuclear magnetic resonance spectroscopy and direct infusion mass spectrometry, respectively. Bayesian robust hierarchical regression revealed decreasing isoleucine with ascent alongside increasing lactate and decreasing glucose, which may point towards increased glycolytic rate. Changes in the lipid profile with ascent included a decrease in triglycerides (48-50 carbons) associated with de novo lipogenesis, alongside increases in circulating levels of the most abundant free fatty acids (palmitic, linoleic and oleic acids). Together, this may be indicative of fat store mobilisation. This study provides the first broad metabolomic account of progressive exposure to environmental hypobaric hypoxia in healthy humans. Decreased isoleucine is of particular interest as a potential contributor to muscle catabolism observed with exposure to hypoxia at altitude. Substantial changes in lipid metabolism may represent important metabolic responses to sub-acute exposure to environmental hypoxia.King's College London, National Institute of Health Researc

    Impact of maintaining serum potassium concentration ≥ 3.6mEq/L versus ≥ 4.5mEq/L for 120 hours after isolated coronary artery bypass graft surgery on incidence of new onset atrial fibrillation: Protocol for a randomized non-inferiority trial.

    Get PDF
    BACKGROUND: Atrial Fibrillation After Cardiac Surgery (AFACS) occurs in about one in three patients following Coronary Artery Bypass Grafting (CABG). It is associated with increased short- and long-term morbidity, mortality and costs. To reduce AFACS incidence, efforts are often made to maintain serum potassium in the high-normal range (≥ 4.5mEq/L). However, there is no evidence that this strategy is efficacious. Furthermore, the approach is costly, often unpleasant for patients, and risks causing harm. We describe the protocol of a planned randomized non-inferiority trial to investigate the impact of intervening to maintain serum potassium ≥ 3.6 mEq/L vs ≥ 4.5 mEq/L on incidence of new-onset AFACS after isolated elective CABG. METHODS: Patients undergoing isolated CABG at sites in the UK and Germany will be recruited, randomized 1:1 and stratified by site to protocols maintaining serum potassium at either ≥ 3.6 mEq/L or ≥ 4.5 mEq/L. Participants will not be blind to treatment allocation. The primary endpoint is AFACS, defined as an episode of atrial fibrillation, flutter or tachycardia lasting ≥ 30 seconds until hour 120 after surgery, which is both clinically detected and electrocardiographically confirmed. Assuming a 35% incidence of AFACS in the 'tight control group', and allowing for a 10% loss to follow-up, 1684 participants are required to provide 90% certainty that the upper limit of a one-sided 97.5% confidence interval (CI) will exclude a > 10% difference in favour of tight potassium control. Secondary endpoints include mortality, use of hospital resources and incidence of dysrhythmias not meeting the primary endpoint (detected using continuous heart rhythm monitoring). DISCUSSION: The Tight K Trial will assess whether a protocol to maintain serum potassium ≥ 3.6 mEq/L is non inferior to maintaining serum potassium ≥ 4.5 mEq/L in preventing new-onset AFACS after isolated CABG. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04053816. Registered on 13 August 2019. Last update 7 January 2021
    corecore