199 research outputs found

    Kondo effect of non-magnetic impurities and the co-existing charge order in the cuprate superconductors

    Full text link
    We present a theory of Kondo effect caused by an induced magnetic moment near non-magnetic impurities such as Zn and Li in the cuprate superconductors. Based on the co-existence of charge order and superconductivity, a natural description of the induced moment and the resulting Kondo effect is obtained in the framework of bond-operator theory of microscopic t-J-V Hamiltonian. The local density of state near impurities is computed in a self-consistent Bogoliubov-de Gennes theory which shows a low-energy peak in the middle of superconducting gap. Our theory also suggests that the charge order can be enhanced near impuries.Comment: 5 pages, 4 figure

    A classification of smooth embeddings of 3-manifolds in 6-space

    Full text link
    We work in the smooth category. If there are knotted embeddings S^n\to R^m, which often happens for 2m<3n+4, then no concrete complete description of embeddings of n-manifolds into R^m up to isotopy was known, except for disjoint unions of spheres. Let N be a closed connected orientable 3-manifold. Our main result is the following description of the set Emb^6(N) of embeddings N\to R^6 up to isotopy. The Whitney invariant W : Emb^6(N) \to H_1(N;Z) is surjective. For each u \in H_1(N;Z) the Kreck invariant \eta_u : W^{-1}u \to Z_{d(u)} is bijective, where d(u) is the divisibility of the projection of u to the free part of H_1(N;Z). The group Emb^6(S^3) is isomorphic to Z (Haefliger). This group acts on Emb^6(N) by embedded connected sum. It was proved that the orbit space of this action maps under W bijectively to H_1(N;Z) (by Vrabec and Haefliger's smoothing theory). The new part of our classification result is determination of the orbits of the action. E. g. for N=RP^3 the action is free, while for N=S^1\times S^2 we construct explicitly an embedding f : N \to R^6 such that for each knot l:S^3\to R^6 the embedding f#l is isotopic to f. Our proof uses new approaches involving the Kreck modified surgery theory or the Boechat-Haefliger formula for smoothing obstruction.Comment: 32 pages, a link to http://www.springerlink.com added, to appear in Math. Zei

    Zeeman effects on the impurity-induced resonances in d-wave superconductors

    Full text link
    It is shown how the resonant states induced by a single spinless impurity in a d-wave superconductor evolve under the effect of an applied Zeeman magnetic field. Moreover, it is demonstrated that the spin-orbit coupling to the impurity potential can have important and characteristic effects on the resonant states and their response to the Zeeman field, especially when the impurity is close to the unitary limit. For zero or very small spin-orbit interaction, the resonant states becomes Zeeman splitted by the magnetic field while when the spin-orbit coupling is important, new low-lying resonances arise which do not show any Zeeman splitting.Comment: 5 pages with 5 eps figures embedded. To appear on Phys. Rev.

    Power spectrum of many impurities in a d-wave superconductor

    Full text link
    Recently the structure of the measured local density of states power spectrum of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of peaks at an "octet" of scattering wave vectors determined assuming weak, noninterfering scattering centers. Using analytical arguments and numerical solutions of the Bogoliubov-de Gennes equations, we discuss how the interference between many impurities in a d-wave superconductor alters this scenario. We propose that the peaks observed in the power spectrum are not the features identified in the simpler analyses, but rather "background" structures which disperse along with the octet vectors. We further consider how our results constrain the form of the actual disorder potential found in this material.Comment: 5 pages.2 figure

    Density of states in d-wave superconductors disordered by extended impurities

    Get PDF
    The low-energy quasiparticle states of a disordered d-wave superconductor are investigated theoretically. A class of such states, formed via tunneling between the Andreev bound states that are localized around extended impurities (and result from scattering between pair-potential lobes that differ in sign) is identified. Its (divergent) contribution to the total density of states is determined by taking advantage of connections with certain one-dimensional random tight-binding models. The states under discussion should be distinguished from those associated with nodes in the pair potential.Comment: 5 pages, 1 figur

    Interplay of quantum magnetic and potential scattering around Zn or Ni impurity ions in superconducting cuprates

    Full text link
    To describe the scattering of superconducting quasiparticles from non-magnetic (Zn) or magnetic (Ni) impurities in optimally doped high Tc_c cuprates, we propose an effective Anderson model Hamiltonian of a localized electron hybridizing with dx2y2d_{x^2-y^2}-wave BCS type superconducting quasiparticles with an attractive scalar potential at the impurity site. Due to the strong local antiferromagnetic couplings between the original Cu ions and their nearest neighbors, the localized electron in the Ni-doped materials is assumed to be on the impurity sites, while in the Zn-doped materials the localized electron is distributed over the four nearest neighbor sites of the impurities with a dominant dx2y2d_{x^2-y^2} symmetric form of the wave function. With Ni impurities, two resonant states are formed above the Fermi level in the local density of states at the impurity site, while for Zn impurities a sharp resonant peak below the Fermi level dominates in the local density of states at the Zn site, accompanied by a small and broad resonant state above the Fermi level mainly induced by the potential scattering. In both cases, there are no Kondo screening effects. The local density of states and their spatial distribution at the dominant resonant energy around the substituted impurities are calculated for both cases, and they are in good agreement with the experimental results of scanning tunneling microscopy in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities, respectively.Comment: 24 pages, Revtex, 8 figures, submitted to Physical Review B for publication. Sub-ject Class: Superconductivity; Strongly Correlated Electron

    Impurity induced resonant state in a pseudogap state of a high temperature superconductor

    Full text link
    We predict a resonance impurity state generated by the substitution of one Cu atom with a nonmagnetic atom, such as Zn, in the pseudogap state of a high-T_c superconductor. The precise microscopic origin of the pseudogap is not important for this state to be formed, in particular this resonance will be present even in the absence of superconducting fluctuations in the normal state. In the presence of superconducting fluctuations, we predict the existence of a counterpart impurity peak on a symmetric bias. The nature of impurity resonance is similar to the previously studied resonance in the d-wave superconducting state.Comment: 4 pages, 2 figure

    Impurity state in the vortex core of d-wave superconductors: Anderson impurity model versus unitary impurity model

    Get PDF
    Using an extended Anderson/Kondo impurity model to describe the magnetic moments around an impurity doped in high-TcT_{\text{c}} d-wave cuprates and in the framework of the slave-boson meanfield approach, we study numerically the impurity state in the vortex core by exact diagonalization of the well-established Bogoliubov-de Gennes equations. The low-energy impurity state is found to be good agreement with scanning tunnelingmicroscopy observation. After pinning a vortex on the impurity site, we compare the unitary impurity model with the extended Anderson impurity model by examining the effect of the magnetic field on the impurity state. We find that the impurity resonance in the unitary impurity model is strongly suppressed by the vortex; while it is insensitive to the field in the extended Anderson impurity model.Comment: 8 pages, 3 figure

    Quantum interference between non-magnetic impurities in d_x2-y2-wave superconductors

    Full text link
    We study quantum interference of electronic waves that are scattered by multiple non-magnetic impurities in a d_x2-y2-wave superconductor. We show that the number of resonance states in the density-of-states (DOS), as well as their frequency and spatial dependence change significantly as the distance between the impurities or their orientation relative to the crystal lattice is varied. Since the latter effect arises from the momentum dependence of the superconducting gap, we argue that quantum interference is a novel tool to identify the symmetry of unconventional superconductors.Comment: 4 pages, 4 figure

    Effect of magnetic field on impurity bound states in high-temperature superconductors

    Full text link
    We consider the influence of a magnetic field H on the quasiparticle bound states near scalar impurities in d-wave superconductors. A ``Doppler shift'' in the excitation energies induced by the supercurrent leads to several important effects. At large but finite impurity strength, there are corrections to the energy and width of the impurity-induced resonance, proportional to H^2. On the other hand, in the limit of very strong impurity potential (unitary limit), the bound state is destroyed and acquires a finite width proportional to H/ln H. There are also considerable changes in the asymptotic behaviour of the bound state wave functions.Comment: RevTeX, 5 pages, 2 figure
    corecore