2,592 research outputs found

    Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    Get PDF
    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity

    Flow of emotional messages in artificial social networks

    Full text link
    Models of message flows in an artificial group of users communicating via the Internet are introduced and investigated using numerical simulations. We assumed that messages possess an emotional character with a positive valence and that the willingness to send the next affective message to a given person increases with the number of messages received from this person. As a result, the weights of links between group members evolve over time. Memory effects are introduced, taking into account that the preferential selection of message receivers depends on the communication intensity during the recent period only. We also model the phenomenon of secondary social sharing when the reception of an emotional e-mail triggers the distribution of several emotional e-mails to other people.Comment: 10 pages, 7 figures, submitted to International Journal of Modern Physics

    Effect of the accelerating growth of communications networks on their structure

    Full text link
    Motivated by data on the evolution of the Internet and World Wide Web we consider scenarios of self-organization of the nonlinearly growing networks into free-scale structures. We find that the accelerating growth of the networks establishes their structure. For the growing networks with preferential linking and increasing density of links, two scenarios are possible. In one of them, the value of the exponent γ\gamma of the connectivity distribution is between 3/2 and 2. In the other, γ>2\gamma>2 and the distribution is necessarily non-stationary.Comment: 4 pages revtex, 3 figure

    Search in Power-Law Networks

    Full text link
    Many communication and social networks have power-law link distributions, containing a few nodes which have a very high degree and many with low degree. The high connectivity nodes play the important role of hubs in communication and networking, a fact which can be exploited when designing efficient search algorithms. We introduce a number of local search strategies which utilize high degree nodes in power-law graphs and which have costs which scale sub-linearly with the size of the graph. We also demonstrate the utility of these strategies on the Gnutella peer-to-peer network.Comment: 17 pages, 14 figure

    Economics-Based Optimization of Unstable Flows

    Full text link
    As an example for the optimization of unstable flows, we present an economics-based method for deciding the optimal rates at which vehicles are allowed to enter a highway. It exploits the naturally occuring fluctuations of traffic flow and is flexible enough to adapt in real time to the transient flow characteristics of road traffic. Simulations based on realistic parameter values show that this strategy is feasible for naturally occurring traffic, and that even far from optimality, injection policies can improve traffic flow. Moreover, the same method can be applied to the optimization of flows of gases and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397). For related work see http://www.parc.xerox.com/dynamics/ and http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Quantum Portfolios

    Get PDF
    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can only find the solution of hard problems probabilistically. Thus the efficiency of the algorithms has to be characterized both by the expected time to completion {\it and} the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-SAT.Comment: revision includes additional data and corrects minor typo

    Properties of weighted complex networks

    Full text link
    We study two kinds of weighted networks, weighted small-world (WSW) and weighted scale-free (WSF). The weight wijw_{ij} of a link between nodes ii and jj in the network is defined as the product of endpoint node degrees; that is wij=(kikj)θw_{ij}=(k_{i}k_{j})^{\theta}. In contrast to adding weights to links during networks being constructed, we only consider weights depending on the `` popularity\rq\rq of the nodes represented by their connectivity. It was found that the both weighted networks have broad distributions on characterization the link weight, vertex strength, and average shortest path length. Furthermore, as a survey of the model, the epidemic spreading process in both weighted networks was studied based on the standard \emph{susceptible-infected} (SI) model. The spreading velocity reaches a peak very quickly after the infection outbreaks and an exponential decay was found in the long time propagation.Comment: 14 pages, 5 figure

    Nonlinear Dynamics in Distributed Systems

    Full text link
    We build on a previous statistical model for distributed systems and formulate it in a way that the deterministic and stochastic processes within the system are clearly separable. We show how internal fluctuations can be analysed in a systematic way using Van Kanpen's expansion method for Markov processes. We present some results for both stationary and time-dependent states. Our approach allows the effect of fluctuations to be explored, particularly in finite systems where such processes assume increasing importance.Comment: Two parts: 8 pages LaTeX file and 5 (uuencoded) figures in Postscript forma

    Log-Networks

    Full text link
    We introduce a growing network model in which a new node attaches to a randomly-selected node, as well as to all ancestors of the target node. This mechanism produces a sparse, ultra-small network where the average node degree grows logarithmically with network size while the network diameter equals 2. We determine basic geometrical network properties, such as the size dependence of the number of links and the in- and out-degree distributions. We also compare our predictions with real networks where the node degree also grows slowly with time -- the Internet and the citation network of all Physical Review papers.Comment: 7 pages, 6 figures, 2-column revtex4 format. Version 2: minor changes in response to referee comments and to another proofreading; final version for PR
    corecore