164,372 research outputs found

    A Study of Anyon Statistics by Breit Hamiltonian Formalism

    Get PDF
    We study the anyon statistics of a 2+12 + 1 dimensional Maxwell-Chern-Simons (MCS) gauge theory by using a systemmetic metheod, the Breit Hamiltonian formalism.Comment: 25 pages, LATE

    Decay Modes of the Hoyle State in 12C^{12}C

    Full text link
    Recent experimental results give an upper limit less than 0.043\% (95\% C.L.) to the direct decay of the Hoyle state into 3α\alpha respect to the sequential decay into 8^8{Be}+α\alpha. We performed one and two-dimensional tunneling calculations to estimate such a ratio and found it to be more than one order of magnitude smaller than experiment depending on the range of the nuclear force. This is within high statistics experimental capabilities. Our results can also be tested by measuring the decay modes of high excitation energy states of 12^{12}C where the ratio of direct to sequential decay might reach 10\% at EE^*(12^{12}C)=10.3 MeV. The link between a Bose Einstein Condensate (BEC) and the direct decay of the Hoyle state is also addressed. We discuss a hypothetical `Efimov state' at EE^*(12^{12}C)=7.458 MeV, which would mainly {\it sequentially} decay with 3α\alpha of {\it equal energies}: a counterintuitive result of tunneling. Such a state, if it would exist, is at least 8 orders of magnitude less probable than the Hoyle's, thus below the sensitivity of recent and past experiments.Comment: 6 pages, 2 figures, accepted by Phys. Lett.

    Valley-kink in Bilayer Graphene at ν=0\nu=0: A Charge Density Signature for Quantum Hall Ferromagnetism

    Get PDF
    We investigate interaction-induced valley domain walls in bilayer graphene in the ν=0\nu=0 quantum Hall state, subject to a perpendicular electric field that is antisymmetric across a line in the sample. Such a state can be realized in a double-gated suspended sample, where the electric field changes sign across a line in the middle. The non-interacting energy spectrum of the ground state is characterized by a sharp domain wall between two valley-polarized regions. Using the Hartree-Fock approximation, we find that the Coulomb interaction opens a gap between the two lowest-lying states near the Fermi level, yielding a smooth domain wall with a kink configuration in the valley index. Our results suggest the possibility to visualize the domain wall via measuring the charge density difference between the two graphene layers, which we find exhibits a characteristic pattern. The width of the kink and the resulting pattern can be tuned by the interplay between the magnetic field and gate electric fields

    G\"{o}del-type universes in f(R) gravity

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without a dark energy matter component. If gravity is governed by a f(R)f(R) theory a number of issues should be reexamined in this framework, including the violation of causality problem on nonlocal scale. We examine the question as to whether the f(R)f(R) gravity theories permit space-times in which the causality is violated. We show that the field equations of these f(R)f(R) gravity theories do not exclude solutions with breakdown of causality for a physically well-motivated perfect-fluid matter content. We demonstrate that every perfect-fluid G\"{o}del-type solution of a generic f(R)f(R) gravity satisfying the condition df/dR>0df/dR > 0 is necessarily isometric to the G\"odel geometry, and therefore presents violation of causality. This result extends a theorem on G\"{o}del-type models, which has been established in the context of general relativity. We also derive an expression for the critical radius rcr_c (beyond which the causality is violated) for an arbitrary f(R)f(R) theory, making apparent that the violation of causality depends on both the f(R)f(R) gravity theory and the matter content. As an illustration, we concretely take a recent f(R)f(R) gravity theory that is free from singularities of the Ricci scalar and is cosmologically viable, and show that this theory accommodates noncausal as well as causal G\"odel-type solutions.Comment: 7 pages, V3: Version to appear in Phys. Rev. D (2009), typos corrected, the generality of our main results is emphasized. The illustrative character of a particular theory is also made explici

    Analysis and interpretation of high transverse entanglement in optical parametric down conversion

    Full text link
    Quantum entanglement associated with transverse wave vectors of down conversion photons is investigated based on the Schmidt decomposition method. We show that transverse entanglement involves two variables: orbital angular momentum and transverse frequency. We show that in the monochromatic limit high values of entanglement are closely controlled by a single parameter resulting from the competition between (transverse) momentum conservation and longitudinal phase matching. We examine the features of the Schmidt eigenmodes, and indicate how entanglement can be enhanced by suitable mode selection methods.Comment: 4 pages, 4 figure

    Type I superconductivity in the Dirac semimetal PdTe2

    Full text link
    The superconductor PdTe2_2 was recently classified as a Type II Dirac semimetal, and advocated to be an improved platform for topological superconductivity. Here we report magnetic and transport measurements conducted to determine the nature of the superconducting phase. Surprisingly, we find that PdTe2_2 is a Type I superconductor with Tc=1.64T_c = 1.64 K and a critical field μ0Hc(0)=13.6\mu_0 H_c (0) = 13.6 mT. Our crystals also exhibit the intermediate state as demonstrated by the differential paramagnetic effect. For H>HcH > H_c we observe superconductivity of the surface sheath. This calls for a close examination of superconductivity in PdTe2_2 in view of the presence of topological surface states.Comment: 5 page
    corecore