67 research outputs found

    Cryptic invasion drives phenotypic changes in central European threespine stickleback

    Get PDF
    Cryptic invasions are commonly associated with genetic changes of the native species or genetic lineage that the invaders replace. Phenotypic shifts resulting from cryptic invasions are less commonly reported given the relative paucity of historical specimens that document such phenotypic changes. Here, I study such a case in two populations of threespine stickleback from central Europe, comparing contemporary patterns of gene flow with phenotypic changes between historical and contemporary population samples. I find gene flow from an invasive lineage to be associated with significant phenotypic changes, where the degree of phenotypic change corresponds with the level of gene flow that a population receives. These findings underline the utility of combining genetic approaches with phenotypic data to estimate the impact of gene flow in systems where anthropogenic alterations have removed former geographic barriers promoting cryptic invasions

    Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation

    Get PDF
    Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1beta and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1beta has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1beta from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1beta was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1beta secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1beta secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions

    Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE) have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments.</p> <p>Results</p> <p>We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification.</p> <p>Conclusion</p> <p>We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability analysis. Moreover, the availability of fully automated microfluidic platforms explicitly developed for the task of biochemical model identification will hopefully reduce the effects of the 'data rich-data poor' paradox in Systems Biology.</p

    Roadmap for the international collaborative epidemiologic monitoring of safety and effectiveness of new high priority vaccines

    No full text
    With the advent of new vaccines targeted to highly endemic diseases in low- and middle-income countries (LMIC) and with the expansion of vaccine manufacturing globally, there is an urgent need to establish an infrastructure to evaluate the benefit-risk profiles of vaccines in LMIC. Fortunately the usual decade(s)-long time gap between introduction of new vaccines in high and low income countries is being significantly reduced or eliminated due to initiatives such as the Global Alliance for Vaccines and Immunizations (GAVI) and the Decade of Vaccines for the implementation of the Global Vaccine Action Plan. While hoping for more rapid disease control, this time shift may potentially add risk, unless appropriate capacity for reliable and timely evaluation of vaccine benefit-risk profiles in some LMIC's are developed with external assistance from regional or global level. An ideal vaccine safety and effectiveness monitoring system should be flexible and sustainable, able to quickly detect possible vaccine-associated events, distinguish them from programmatic errors, reliably and quickly evaluate the suspected event and its association with vaccination and, if associated, determine the benefit-risk of vaccines to inform appropriate action. Based upon the demonstrated feasibility of active surveillance in LMIC as shown by the Burkina Faso assessment of meningococcal A conjugate vaccine or that of rotavirus vaccine in Mexico and Brazil, and upon the proof of concept international GBS study, we suggest a sustainable, flexible, affordable and timely international collaborative vaccine safety monitoring approach for vaccines being newly introduced. While this paper discusses only the vaccine component, the same system could also be eventually used for monitoring drug effectiveness (including the use of substandard drugs) and drug safety. Published by Elsevier Ltd
    • …
    corecore