367 research outputs found

    Analysing a mechanism of failure in retrieved magnetically controlled spinal rods

    Get PDF
    PURPOSE: We aim to describe a mechanism of failure in magnetically controlled growth rods which are used for the correction of the early onset scoliosis. METHODS: This retrieval study involved nine magnetically controlled growth rods, of a single design, revised from five patients for metal staining, progression of scoliosis, swelling, fractured actuator pin, and final fusion. All the retrieved rods were radiographed and assessed macroscopically and microscopically for material loss. Two implants were further analysed using micro-CT scanning and then sectioned to allow examination of the internal mechanism. No funding was obtained to analyse these implants. There were no potential conflicts interests. RESULTS: Plain radiographs revealed that three out of nine retrieved rods had a fractured pin. All had evidence of surface degradation on the extendable telescopic rod. There was considerable corrosion along the internal mechanism. CONCLUSIONS: We found that a third of the retrieved magnetically controlled growth rods had failed due to pin fracture secondary to corrosion of the internal mechanism. We recommend that surgeons consider that any inability of magnetically controlled growth rods to distract may be due to corrosive debris building up inside the mechanism, thereby preventing normal function

    Compactness Determines the Success of Cube and Octahedron Self-Assembly

    Get PDF
    Nature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often three-dimensional, structures from basic building blocks. Although there have been several demonstrations of this self-assembly fabrication process, rules that govern a priori design, yield and defect tolerance remain unknown. In this paper, we have designed the first model experimental system for systematically analyzing the influence of geometry on the self-assembly of 200 and 500 µm cubes and octahedra from tethered, multi-component, two-dimensional (2D) nets. We examined the self-assembly of all eleven 2D nets that can fold into cubes and octahedra, and we observed striking correlations between the compactness of the nets and the success of the assembly. Two measures of compactness were used for the nets: the number of vertex or topological connections and the radius of gyration. The success of the self-assembly process was determined by measuring the yield and classifying the defects. Our observation of increased self-assembly success with decreased radius of gyration and increased topological connectivity resembles theoretical models that describe the role of compactness in protein folding. Because of the differences in size and scale between our system and the protein folding system, we postulate that this hypothesis may be more universal to self-assembling systems in general. Apart from being intellectually intriguing, the findings could enable the assembly of more complicated polyhedral structures (e.g. dodecahedra) by allowing a priori selection of a net that might self-assemble with high yields

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Observation of the Zero Doppler Effect

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.National Basic Research Program (973) of China (No. 2011CB922001), and National Natural Science Foundation of China (No. 11234010)

    VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis

    Get PDF
    BACKGROUND: Angiogenesis appears to be a first-order event in psoriatic arthritis (PsA). Among angiogenic factors, the cytokines vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factors 1 and 2 (FGF1 and FGF2) play a central role in the initiation of angiogenesis. Most of these cytokines have been shown to be upregulated in or associated with psoriasis, rheumatoid arthritis (RA) or ankylosing spondylitis (AS). As these diseases share common susceptibility associations with PsA, investigation of these angiogenic factors is warranted. METHODS: Two hundred and fifty-eight patients with PsA and 154 ethnically matched controls were genotyped using a Sequenom chip-based MALDI-TOF mass spectrometry platform. Four SNPs in the VEGF gene, three SNPs in the EGF gene and one SNP each in FGF1 and FGF2 genes were evaluated. Statistical analysis was performed using Fisher's exact test, and the Cochrane-Armitage trend test. Associations with haplotypes were estimated by using weighted logistic models, where the individual haplotype estimates were obtained using Phase v2.1. RESULTS: We have observed an increased frequency in the T allele of VEGF +936 (rs3025039) in control subjects when compared to our PsA patients [Fisher's exact p-value = 0.042; OR 0.653 (95% CI: 0.434, 0.982)]. Haplotyping of markers revealed no significant associations. CONCLUSION: The T allele of VEGF in +936 may act as a protective allele in the development of PsA. Further studies regarding the role of pro-angiogenic markers in PsA are warranted

    Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations

    Get PDF
    BACKGROUND: Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels. RESULTS: An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. CONCLUSION: Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data

    A liver fibrosis cocktail? Psoriasis, methotrexate and genetic hemochromatosis

    Get PDF
    BACKGROUND: Pathologists are often faced with the dilemma of whether to recommend continuation of methotrexate therapy for psoriasis within the context of an existing pro-fibrogenic risk factor, in this instance, patients with genetic hemochromatosis. CASE PRESENTATIONS: We describe our experience with two male psoriatic patients (A and B) on long term methotrexate therapy (cumulative dose A = 1.56 gms and B = 7.88 gms) with hetero- (A) and homozygous (B) genetic hemochromatosis. These patients liver function were monitored with routine biochemical profiling; apart from mild perivenular fibrosis in one patient (B), significant liver fibrosis was not identified in either patient with multiple interval percutaneous liver biopsies; in the latter instance this patient (B) had an additional risk factor of partiality to alcohol. CONCLUSION: We conclude that methotrexate therapy is relatively safe in patients with genetic hemochromatosis, with no other risk factor, but caution that the risk of fibrosis be monitored, preferably by non-invasive techniques, or by liver biopsy

    Expression of CDX2 and Hepatocyte Antigen in Benign and Malignant Lesions of Gallbladder and Its Correlation with Histopathologic Type and Clinical Outcome

    Get PDF
    Recent studies have shown that both CDX2 and Hepatocyte antigen (Hep) are detected in different types of cancer and associated with clinical prognosis. However, fever studies have examined gallbladder cancer specimens, and little is known about the clinicopathological significance of both CDX2 and Hep expression in gallbladder adenocarcinomas. In present study, we examined the expression frequencies of CDX2 and Hepatocyte antigen (Hep), and explored their clinicopathologic significances in gallbladder adenocarcinoma. Immunohistochemistry was used to detect and compare the frequencies of CDX2 and Hep expression in 108 samples of gallbladder adenocarcinoma, 46 peri-tumor tissues and 35 chronic cholecystitis. The expression frequencies for CDX2 and Hep were 49/108 (45.4%) and 45/108 (41.7%) in gallbladder carcinoma; 13/46 (28.3%) and 11/46 (23.9) in peri-tumor tissues; 5/35 (14.3%) and 2/35 (5.7%) in chronic cholecystitis. The positive staining of CDX2 or Hep in gallbladder adenocarcinoma was significantly higher than that in peritumoral tissues (both, P < 0.05), and chronic cholecystits (both, P < 0.01). The expression of CDX2 or Hep was negatively correlated to grade of differentiation, tumor size and lymph node metastasis (P < 0.01 or P < 0.05). Elevated expression frequency of CDX2 or Hep was associated with increased overall survival (P = 0.003 or P = 0.002). Multivariate Cox regression analysis showed that CDX2 (P = 0.014) or Hep (P = 0.026) expression was an independent prognostic predictor in gallbladder adenocarcinoma. CDX2 and Hep might function as important biological markers in the development and prognosis of gallbladder adenocarcinoma

    Changes in Plasma Membrane Surface Potential of PC12 Cells as Measured by Kelvin Probe Force Microscopy

    Get PDF
    The plasma membrane of a cell not only works as a physical barrier but also mediates the signal relay between the extracellular milieu and the cell interior. Various stimulants may cause the redistribution of molecules, like lipids, proteins, and polysaccharides, on the plasma membrane and change the surface potential (Φs). In this study, the Φss of PC12 cell plasma membranes were measured by atomic force microscopy in Kelvin probe mode (KPFM). The skewness values of the Φss distribution histogram were found to be mostly negative, and the incorporation of negatively charged phosphatidylserine shifted the average skewness values to positive. After being treated with H2O2, dopamine, or Zn2+, phosphatidylserine was found to be translocated to the membrane outer leaflet and the averaged skewness values were changed to positive values. These results demonstrated that KPFM can be used to monitor cell physiology status in response to various stimulants with high spatial resolution
    corecore