37 research outputs found
Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation
Joint segmentation and classification of fine-grained actions is important
for applications of human-robot interaction, video surveillance, and human
skill evaluation. However, despite substantial recent progress in large-scale
action classification, the performance of state-of-the-art fine-grained action
recognition approaches remains low. We propose a model for action segmentation
which combines low-level spatiotemporal features with a high-level segmental
classifier. Our spatiotemporal CNN is comprised of a spatial component that
uses convolutional filters to capture information about objects and their
relationships, and a temporal component that uses large 1D convolutional
filters to capture information about how object relationships change across
time. These features are used in tandem with a semi-Markov model that models
transitions from one action to another. We introduce an efficient constrained
segmental inference algorithm for this model that is orders of magnitude faster
than the current approach. We highlight the effectiveness of our Segmental
Spatiotemporal CNN on cooking and surgical action datasets for which we observe
substantially improved performance relative to recent baseline methods.Comment: Updated from the ECCV 2016 version. We fixed an important
mathematical error and made the section on segmental inference cleare
Stam: a framework for spatio-temporal affordance maps
A�ordances have been introduced in literature as action op-
portunities that objects o�er, and used in robotics to semantically rep-
resent their interconnection. However, when considering an environment
instead of an object, the problem becomes more complex due to the
dynamism of its state. To tackle this issue, we introduce the concept
of Spatio-Temporal A�ordances (STA) and Spatio-Temporal A�ordance
Map (STAM). Using this formalism, we encode action semantics re-
lated to the environment to improve task execution capabilities of an
autonomous robot. We experimentally validate our approach to support
the execution of robot tasks by showing that a�ordances encode accurate
semantics of the environment
VIENA2: A Driving Anticipation Dataset
Action anticipation is critical in scenarios where one needs to react before
the action is finalized. This is, for instance, the case in automated driving,
where a car needs to, e.g., avoid hitting pedestrians and respect traffic
lights. While solutions have been proposed to tackle subsets of the driving
anticipation tasks, by making use of diverse, task-specific sensors, there is
no single dataset or framework that addresses them all in a consistent manner.
In this paper, we therefore introduce a new, large-scale dataset, called
VIENA2, covering 5 generic driving scenarios, with a total of 25 distinct
action classes. It contains more than 15K full HD, 5s long videos acquired in
various driving conditions, weathers, daytimes and environments, complemented
with a common and realistic set of sensor measurements. This amounts to more
than 2.25M frames, each annotated with an action label, corresponding to 600
samples per action class. We discuss our data acquisition strategy and the
statistics of our dataset, and benchmark state-of-the-art action anticipation
techniques, including a new multi-modal LSTM architecture with an effective
loss function for action anticipation in driving scenarios.Comment: Accepted in ACCV 201
Graph Distillation for Action Detection with Privileged Modalities
We propose a technique that tackles action detection in multimodal videos
under a realistic and challenging condition in which only limited training data
and partially observed modalities are available. Common methods in transfer
learning do not take advantage of the extra modalities potentially available in
the source domain. On the other hand, previous work on multimodal learning only
focuses on a single domain or task and does not handle the modality discrepancy
between training and testing. In this work, we propose a method termed graph
distillation that incorporates rich privileged information from a large-scale
multimodal dataset in the source domain, and improves the learning in the
target domain where training data and modalities are scarce. We evaluate our
approach on action classification and detection tasks in multimodal videos, and
show that our model outperforms the state-of-the-art by a large margin on the
NTU RGB+D and PKU-MMD benchmarks. The code is released at
http://alan.vision/eccv18_graph/.Comment: ECCV 201
CAR-Net: Clairvoyant Attentive Recurrent Network
We present an interpretable framework for path prediction that leverages
dependencies between agents' behaviors and their spatial navigation
environment. We exploit two sources of information: the past motion trajectory
of the agent of interest and a wide top-view image of the navigation scene. We
propose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where
to look in a large image of the scene when solving the path prediction task.
Our method can attend to any area, or combination of areas, within the raw
image (e.g., road intersections) when predicting the trajectory of the agent.
This allows us to visualize fine-grained semantic elements of navigation scenes
that influence the prediction of trajectories. To study the impact of space on
agents' trajectories, we build a new dataset made of top-view images of
hundreds of scenes (Formula One racing tracks) where agents' behaviors are
heavily influenced by known areas in the images (e.g., upcoming turns). CAR-Net
successfully attends to these salient regions. Additionally, CAR-Net reaches
state-of-the-art accuracy on the standard trajectory forecasting benchmark,
Stanford Drone Dataset (SDD). Finally, we show CAR-Net's ability to generalize
to unseen scenes.Comment: The 2nd and 3rd authors contributed equall
Forecasting Human-Object Interaction: Joint Prediction of Motor Attention and Actions in First Person Video
We address the challenging task of anticipating human-object interaction in
first person videos. Most existing methods ignore how the camera wearer
interacts with the objects, or simply consider body motion as a separate
modality. In contrast, we observe that the international hand movement reveals
critical information about the future activity. Motivated by this, we adopt
intentional hand movement as a future representation and propose a novel deep
network that jointly models and predicts the egocentric hand motion,
interaction hotspots and future action. Specifically, we consider the future
hand motion as the motor attention, and model this attention using latent
variables in our deep model. The predicted motor attention is further used to
characterise the discriminative spatial-temporal visual features for predicting
actions and interaction hotspots. We present extensive experiments
demonstrating the benefit of the proposed joint model. Importantly, our model
produces new state-of-the-art results for action anticipation on both EGTEA
Gaze+ and the EPIC-Kitchens datasets. Our project page is available at
https://aptx4869lm.github.io/ForecastingHOI
A 3D Human Posture Approach for Activity Recognition Based on Depth Camera
Human activity recognition plays an important role in the context of Ambient Assisted Living (AAL), providing useful tools to improve people quality of life. This work presents an activity recognition algorithm based on the extraction of skeleton joints from a depth camera. The system describes an activity using a set of few and basic postures extracted by means of the X-means clustering algorithm. A multi-class Support Vector Machine, trained with the Sequential Minimal Optimization is employed to perform the classification. The system is evaluated on two public datasets for activity recognition which have different skeleton models, the CAD-60 with 15 joints and the TST with 25 joints. The proposed approach achieves precision/recall performances of 99.8 % on CAD-60 and 97.2 %/91.7 % on TST. The results are promising for an applied use in the context of AAL
Human activity learning for assistive robotics using a classifier ensemble
Assistive robots in ambient assisted living environments can be equipped with learning capabilities to effectively learn and execute human activities. This paper proposes a human activity learning (HAL) system for application in assistive robotics. An RGB-depth sensor is used to acquire information of human activities, and a set of statistical, spatial and temporal features for encoding key aspects of human activities are extracted from the acquired information of human activities. Redundant features are removed and the relevant features used in the HAL model. An ensemble of three individual classifiers—support vector machines (SVMs), K-nearest neighbour and random forest - is employed to learn the activities. The performance of the proposed system is improved when compared with the performance of other methods using a single classifier. This approach is evaluated on experimental dataset created for this work and also on a benchmark dataset—the Cornell Activity Dataset (CAD-60). Experimental results show the overall performance achieved by the proposed system is comparable to the state of the art and has the potential to benefit applications in assistive robots for reducing the time spent in learning activities
VIENA(2): A Driving Anticipation Dataset
Action anticipation is critical in scenarios where one needs to react before the action is finalized. This is, for instance, the case in automated driving, where a car needs to, e.g., avoid hitting pedestrians and respect traffic lights. While solutions have been proposed to tackle subsets of the driving anticipation tasks, by making use of diverse, task-specific sensors, there is no single dataset or framework that addresses them all in a consistent manner. In this paper, we therefore introduce a new, large-scale dataset, called VIENA2, covering 5 generic driving scenarios, with a total of 25 distinct action classes. It contains more than 15K full HD, 5 s long videos acquired in various driving conditions, weathers, daytimes and environments, complemented with a common and realistic set of sensor measurements. This amounts to more than 2.25M frames, each annotated with an action label, corresponding to 600 samples per action class. We discuss our data acquisition strategy and the statistics of our dataset, and benchmark state-of-the-art action anticipation techniques, including a new multi-modal LSTM architecture with an effective loss function for action anticipation in driving scenarios