48 research outputs found
Targeted Deletion of Neuropeptide Y (NPY) Modulates Experimental Colitis
Neurogenic inflammation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). We examined the role of neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in modulating colitis.Colitis was induced by administration of dextran sodium sulphate (3% DSS) or streptomycin pre-treated Salmonella typhimurium (S.T.) in wild type (WT) and NPY (NPY(-/-)) knockout mice. Colitis was assessed by clinical score, histological score and myeloperoxidase activity. NPY and nNOS expression was assessed by immunostaining. Oxidative stress was assessed by measuring catalase activity, glutathione and nitrite levels. Colonic motility was assessed by isometric muscle recording in WT and DSS-treated mice.DSS/S.T. induced an increase in enteric neuronal NPY and nNOS expression in WT mice. WT mice were more susceptible to inflammation compared to NPY(-/-) as indicated by higher clinical & histological scores, and myeloperoxidase (MPO) activity (p<0.01). DSS-WT mice had increased nitrite, decreased glutathione (GSH) levels and increased catalase activity indicating more oxidative stress. The lower histological scores, MPO and chemokine KC in S.T.-treated nNOS(-/-) and NPY(-/-)/nNOS(-/-) mice supported the finding that loss of NPY-induced nNOS attenuated inflammation. The inflammation resulted in chronic impairment of colonic motility in DSS-WT mice. NPY -treated rat enteric neurons in vitro exhibited increased nitrite and TNF-alpha production.NPY mediated increase in nNOS is a determinant of oxidative stress and subsequent inflammation. Our study highlights the role of neuronal NPY and nNOS as mediators of inflammatory processes in IBD
A Switching Mechanism in Doxorubicin Bioactivation Can Be Exploited to Control Doxorubicin Toxicity
Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation
School choice and the commodification of education: A visual approach to school brochures and websites
As subjects of the parental right to choose (DES, 1988), parents are called upon to fulfil certain duties and responsibilities when choosing a secondary school for their child, with the expectation that they might navigate the school system ‘successfully’ and become ‘better informed consumers’ (DCSF, 2008). To comply with these rules of citizenship parents are encouraged to make use of a variety of information on schools as part of a realistic and informed choice, one that is consummate with their role as consumer-citizens. Such ‘cognitive mapping’ is evident in school brochures and websites where choice is assembled on the basis of visual iconography and narrative terrains. This leads to a consideration of how choice is visually mediated and communicated through the circulation of symbols and the structure of narratives. To explain these phenomena, I analyse and compare the ways in which two all-girls faith secondary schools attempt to (further) define themselves, culturally, historically and pedagogically, in a crowded field of choice. I conclude the paper with a discussion of the benefits and insights generated through a visually orientated approach to the study of school choice
Induction of interleukin-8 production via nuclear factor-κB activation in human intestinal epithelial cells infected with Vibrio vulnificus
Vibrio vulnificus, a Gram-negative estuarine bacterium, is a causative agent of food-borne diseases, such as life-threatening septicaemia and wound infection disease. V. vulnificus penetrating into the epithelial barrier stimulates an inflammatory response in the adjacent mucosa. Therefore, interaction between V. vulnificus and epithelial cells is important for understanding of both the immunology of mucosal surfaces and V. vulnificus. In this study, we investigated the effect and action mechanism of V. vulnificus infection on production of interleukin (IL)-8, a proinflammatory cytokine, in human intestinal epithelial INT-407 cells. V. vulnificus infection significantly induced IL-8 production in a time- and multiplicity of infection (MOI)-dependent manner, as determined by human IL-8 enzyme-linked immunosorbent assay (ELISA). In addition, V. vulnificus infection significantly increased IL-8 mRNA levels in INT-407 cells, indicating that the increased IL-8 production by V. vulnificus occurred at the transcriptional level. V. vulnificus infection also enhanced IL-8 gene promoter activity in INT-407 cells transiently transfected with IL-8 promoter constructs, but this effect was impaired in INT-407 cells transfected with IL-8 promoter constructs deleted or mutated of a κB site. V. vulnificus infection increased the nuclear factor-kappaB (NF-κB) binding activity to a κB site and the degradation of ΙκB-α protein in a time- and a MOI-dependent manner. Furthermore, BAY11-7082, an inhibitor of NF-κB activation, significantly reduced the IL-8 production, NF-κB binding activity and ΙκB-α degradation induced by V. vulnificus infection. Taken together, these results indicate clearly that V. vulnificus infection significantly induces IL-8 production in human intestinal epithelial cells via NF-κB activation
Tracking the dynamics of T-cell activation in response to Salmonella infection
Despite the current availability of Salmonella vaccines, typhoid fever remains a significant public health problem in developing countries. A greater understanding of T-cell activation and the development of immunological memory during Salmonella infection should lead to the development of more effective prophylactic intervention. Here, we review recent literature on the initiation, expansion and memory development of T-cell responses using the mouse model of typhoid. We pay particular attention to strategies for tracking T-cell responses in vivo and ex vivo, and suggest models to integrate some these studies
Anti-flagellin antibody responses elicited in mice orally immunized with attenuated Salmonella enterica serovar Typhimurium vaccine strains
In the present study we investigated the flagellin-specific serum (IgG) and fecal (IgA) antibody responses elicited in BALB/c mice immunized with isogenic mutant derivatives of the attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) SL3261 strain expressing phase 1 (FliCi), phase 2 (FljB), or no endogenous flagellin. The data reported here indicate that mice orally immunized with recombinant S. Typhimurium strains do not mount significant systemic or secreted antibody responses to FliCi, FljB or heterologous B-cell epitopes genetically fused to FliCi. These findings are particularly relevant for those interested in the use of flagellins as molecular carriers of heterologous antigens vectored by attenuated S. Typhimurium strains