22 research outputs found

    Hedgehog Signaling in Tumor Cells Facilitates Osteoblast-Enhanced Osteolytic Metastases

    Get PDF
    The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh) pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon

    Lipid Modifications of Sonic Hedgehog Ligand Dictate Cellular Reception and Signal Response

    Get PDF
    Sonic hedgehog (Shh) signaling regulates cell growth during embryonic development, tissue homeostasis and tumorigenesis. Concentration-dependent cellular responses to secreted Shh protein are essential for tissue patterning. Shh ligand is covalently modified by two lipid moieties, cholesterol and palmitate, and their hydrophobic properties are known to govern the cellular release and formation of soluble multimeric Shh complexes. However, the influences of the lipid moieties on cellular reception and signal response are not well understood.We analyzed fully lipidated Shh and mutant forms to eliminate one or both adducts in NIH3T3 mouse embryonic fibroblasts. Quantitative measurements of recombinant Shh protein concentration, cellular localization, and signaling potency were integrated to determine the contributions of each lipid adduct on ligand cellular localization and signaling potency. We demonstrate that lipid modification is required for cell reception, that either adduct is sufficient to confer cellular association, that the cholesterol adduct anchors ligand to the plasma membrane and that the palmitate adduct augments ligand internalization. We further show that signaling potency correlates directly with cellular concentration of Shh ligand.The findings of this study demonstrate that lipid modification of Shh determines cell concentration and potency, revealing complementary functions of hydrophobic modification in morphogen signaling by attenuating cellular release and augmenting reception of Shh protein in target tissues

    Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent

    No full text
    Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coliderived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen- binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF beta-chain demonstrate that onartuzumab acts specifically by blocking HGF alpha-chain (but not beta-chain) binding to MET. These data suggest a likely binding site of the HGF alpha-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinkin
    corecore