27 research outputs found

    Increased vascular contractility in hypertension results from impaired endothelial calcium signaling

    Get PDF
    Endothelial cells line all blood vessels and are critical regulators of vascular tone. In hypertension, disruption of endothelial function alters the release of endothelial-derived vasoactive factors and results in increased vascular tone. Although the release of endothelial-derived vasodilators occurs in a Ca2+-dependent manner, little is known on how Ca2+ signaling is altered in hypertension. A key element to endothelial control of vascular tone is Ca2+ signals at specialized regions (myoendothelial projections) that connect endothelial cells and smooth muscle cells. This work describes disruption in the operation of this key Ca2+ signaling pathway in hypertension. We show that vascular reactivity to phenylephrine is increased in hypertensive (spontaneously hypertensive rat) when compared with normotensive (Wistar Kyoto) rats. Basal endothelial Ca2+ activity limits vascular contraction, but that Ca2+-dependent control is impaired in hypertension. When changes in endothelial Ca2+ levels are buffered, vascular contraction to phenylephrine increased, resulting in similar responses in normotension and hypertension. Local endothelial IP3(inositol trisphosphate)-mediated Ca2+ signals are smaller in amplitude, shorter in duration, occur less frequently, and arise from fewer sites in hypertension. Spatial control of endothelial Ca2+ signaling is also disrupted in hypertension: local Ca2+ signals occur further from myoendothelial projections in hypertension. The results demonstrate that the organization of local Ca2+ signaling circuits occurring at myoendothelial projections is disrupted in hypertension, giving rise to increased contractile responses

    Primary biliary cirrhosis and autoimmune cholangitis are not associated with coeliac disease in Crete

    Get PDF
    BACKGROUND: An increased prevalence of coeliac disease in patients with primary biliary cirrhosis has been recently reported. However, in other studies the association has not been confirmed. There have been no formal attempts to systematically evaluate patients with autoimmune cholangitis for coeliac disease. METHODS: Sera from 62 patients with primary biliary cirrhosis, 17 with autoimmune cholangitis and 100 blood donors were screened for anti-gliadin, anti-endomysial, anti-reticulin, and IgA class antibodies to guinea pig liver-derived tissue transglutaminase. Eighteen untreated coeliacs served as methodological controls. Analyses were performed by using the χ(2) and Fischer's exact tests. RESULTS: Anti-gliadin antibodies were detected in 21% of patients with primary biliary cirrhosis, 35% of patients with autoimmune cholangitis, and 3% of controls (p < 0.001). IgA class gliadin antibodies positivity was more pronounced in patients with Scheuer's stage III-IV disease (p < 0.05). Anti-transglutaminase antibodies were detected in 10% and in 18% of patients with primary biliary cirrhosis and autoimmune cholangitis respectively (p < 0.001). Anti-reticulin and anti-endomysial antibodies were negative in all patients. Duodenal biopsies were performed in 59% and 71% of patients with primary biliary cirrhosis and autoimmune cholangitis respectively, tested positive for at least one antibody class. No histological features of coeliac disease were found. CONCLUSIONS: We were unable to demonstrate an increased risk of coeliac disease in patients with primary biliary cirrhosis and autoimmune cholangitis. Our results confirm the previously reported high prevalence of false-positive anti-gliadin and guinea pig liver-derived anti-tissue transglutaminase antibodies in patients with chronic liver disease

    Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms

    Get PDF
    YesRecent clinical trials of the hypoglycaemic sodium-glucose co-transporter-2 (SGLT2) inhibitors, which inhibit renal glucose reabsorption, have reported beneficial cardiovascular outcomes. Whether SGLT2 inhibitors directly affect cardiovascular tissues, however, remains unclear. We have previously reported that the SGLT2 inhibitor canagliflozin activates AMP-activated protein kinase (AMPK) in immortalised cell lines and murine hepatocytes. As AMPK has anti-inflammatory actions in vascular cells, we examined whether SGLT2 inhibitors attenuated inflammatory signalling in cultured human endothelial cells. Incubation with clinically-relevant concentrations of canagliflozin, but not empagliflozin or dapagliflozin activated AMPK and inhibited IL-1β-stimulated adhesion of pro-monocytic U937 cells and secretion of IL-6 and monocyte chemoattractant protein-1 (MCP-1). Inhibition of MCP-1 secretion was attenuated by expression of dominant-negative AMPK and was mimicked by the direct AMPK activator, A769662. Stimulation of cells with either canagliflozin or A769662 had no effect on IL-1β-stimulated cell surface levels of adhesion molecules or nuclear factor-κB signalling. Despite these identical effects of canagliflozin and A769662, IL-1β-stimulated IL-6/MCP-1 mRNA was inhibited by canagliflozin, but not A769662, whereas IL-1β-stimulated c-jun N-terminal kinase phosphorylation was inhibited by A769662, but not canagliflozin. These data indicate that clinically-relevant canagliflozin concentrations directly inhibit endothelial pro-inflammatory chemokine/cytokine secretion by AMPK-dependent and -independent mechanisms without affecting early IL-1β signalling.Project Grant (PG/13/82/30483 to IPS and TMP) and PhD studentships (FS/16/55/32731 and FS/14/61/31284 to DB and AS) from the British Heart Foundation and an equipment grant (BDA11/0004309 to IPS and TMP) from Diabetes UK. OJK was supported by a Scholarship from the Iraqi Ministry of Higher Education and Scientific Research. TAA was supported by a Libyan Ministry of Education PhD Studentship
    corecore