4 research outputs found

    Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    Get PDF
    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts

    Impacts of Sediments on Coral Energetics: Partitioning the Effects of Turbidity and Settling Particles

    Get PDF
    Sediment loads have long been known to be deleterious to corals, but the effects of turbidity and settling particles have not previously been partitioned. This study provides a novel approach using inert silicon carbide powder to partition and quantify the mechanical effects of sediment settling versus reduced light under a chronically high sedimentary regime on two turbid water corals commonly found in Singapore (Galaxea fascicularis and Goniopora somaliensis). Coral fragmentswere evenly distributed among three treatments: an open control (30% ambient PAR), a shaded control (15% ambient PAR) and sediment treatment (15% ambient PAR; 26.4 mg cm22 day21). The rate of photosynthesis and respiration, and the dark-adapted quantum yield were measured once a week for four weeks. By week four, the photosynthesis to respiration ratio (P/R ratio) and the photosynthetic yield (Fv/Fm) had fallen by 14% and 3–17% respectively in the shaded control,contrasting with corals exposed to sediments whose P/R ratio and yield had declined by 21% and 18–34% respectively. The differences in rates between the shaded control and the sediment treatment were attributed to the mechanical effects of sediment deposition. The physiological response to sediment stress differed between species with G. fascicularis experiencing a greater decline in the net photosynthetic yield (13%) than G. somaliensis (9.5%), but a smaller increase in the respiration rates (G. fascicularis = 9.9%, G. somaliensis = 14.2%). These different physiological responses were attributed, in part, to coral morphology and highlighted key physiological processes that drive species distribution along high to low turbidity and depositional gradients

    A High Throughput In Vivo Assay for Taste Quality and Palatability

    Get PDF
    Taste quality and palatability are two of the most important properties measured in the evaluation of taste stimuli. Human panels can report both aspects, but are of limited experimental flexibility and throughput capacity. Relatively efficient animal models for taste evaluation have been developed, but each of them is designed to measure either taste quality or palatability as independent experimental endpoints. We present here a new apparatus and method for high throughput quantification of both taste quality and palatability using rats in an operant taste discrimination paradigm. Cohorts of four rats were trained in a modified operant chamber to sample taste stimuli by licking solutions from a 96-well plate that moved in a randomized pattern beneath the chamber floor. As a rat’s tongue entered the well it disrupted a laser beam projecting across the top of the 96-well plate, consequently producing two retractable levers that operated a pellet dispenser. The taste of sucrose was associated with food reinforcement by presses on a sucrose-designated lever, whereas the taste of water and other basic tastes were associated with the alternative lever. Each disruption of the laser was counted as a lick. Using this procedure, rats were trained to discriminate 100 mM sucrose from water, quinine, citric acid, and NaCl with 90-100% accuracy. Palatability was determined by the number of licks per trial and, due to intermediate rates of licking for water, was quantifiable along the entire spectrum of appetitiveness to aversiveness. All 96 samples were evaluated within 90 minute test sessions with no evidence of desensitization or fatigue. The technology is capable of generating multiple concentration–response functions within a single session, is suitable for in vivo primary screening of tastant libraries, and potentially can be used to evaluate stimuli for any taste system
    corecore