11 research outputs found

    Broken Heart Syndrome: Is The Heart Really Broken?

    No full text
    Stress induced cardiomyopathy, which is also known as Takotsubo cardiomyopathy, is a cardiac syndrome of a transient, reversible left ventricular dysfunction that is caused by emotional and/or physical stress. Its clinical manifestations are similar to those of myocardial ischemia without a coronary artery lesion. Stress-induced cardiomyopathy is more common in middle-aged women, and the prognosis is favorable. We report the case of a 54-year-old female who had consulted a psychiatrist regarding her problematic son and were in the process of venting her feelings when she had an episode of cardiomyopathy. She fulfilled the ICD criteria for a Double Depression. Implications of condition are discussed

    Aconitum biotechnology: recent trends and emerging perspectives

    No full text

    At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor?

    No full text
    International audienceCalcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis
    corecore