18 research outputs found

    Exploring user experience and technology acceptance for a fall prevention system: results from a randomized clinical trial and a living lab

    Get PDF
    Background: Falls are common in older adults and can result in serious injuries. Due to demographic changes, falls and related healthcare costs are likely to increase over the next years. Participation and motivation of older adults in fall prevention measures remain a challenge. The iStoppFalls project developed an information and communication technology (ICT)-based system for older adults to use at home in order to reduce common fall risk factors such as impaired balance and muscle weakness. The system aims at increasing older adults’ motivation to participate in ICT-based fall prevention measures. This article reports on usability, user-experience and user-acceptance aspects affecting the use of the iStoppFalls system by older adults. Methods: In the course of a 16-week international multicenter study, 153 community-dwelling older adults aged 65+ participated in the iStoppFalls randomized controlled trial, of which half used the system in their home to exercise and assess their risk of falling. During the study, 60 participants completed questionnaires regarding the usability, user experience and user acceptance of the iStoppFalls system. Usability was measured with the System Usability Scale (SUS). For user experience the Physical Activity Enjoyment Scale (PACES) was applied. User acceptance was assessed with the Dynamic Acceptance Model for the Re-evaluation of Technologies (DART). To collect more detailed data on usability, user experience and user acceptance, additional qualitative interviews and observations were conducted with participants. Results: Participants evaluated the usability of the system with an overall score of 62 (Standard Deviation, SD 15.58) out of 100, which suggests good usability. Most users enjoyed the iStoppFalls games and assessments, as shown by the overall PACES score of 31 (SD 8.03). With a score of 0.87 (SD 0.26), user acceptance results showed that participants accepted the iStoppFalls system for use in their own home. Interview data suggested that certain factors such as motivation, complexity or graphical design were different for gender and age. Conclusions: The results suggest that the iStoppFalls system has good usability, user experience and user acceptance. It will be important to take these along with factors such as motivation, gender and age into consideration when designing and further developing ICT-based fall prevention systems

    Yeast Bax Inhibitor, Bxi1p, Is an ER-Localized Protein That Links the Unfolded Protein Response and Programmed Cell Death in Saccharomyces cerevisiae

    Get PDF
    Bax inhibitor-1 (BI-1) is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR) that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death

    Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: possible role of Kv, KATP channels and A2a receptor crosstalk

    No full text
    BACKGROUND: Lidocaine is an approved local anesthetic and Class 1B antiarrhythmic with a number of ancillary properties. Our aim was to investigate lidocaine’s vasoreactivity properties in intact versus denuded rat thoracic aortic rings, and the effect of inhibitors of nitric oxide (NO), prostenoids, voltage-dependent K(v) and K(ATP) channels, membrane Na(+)/K(+) pump, and A(2a) and A(2b) receptors. METHODS: Aortic rings were harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, pH 7.4, 37 °C. The rings were pre-contracted sub-maximally with 0.3 μM norepinephrine (NE), and the effect of increasing lidocaine concentrations was examined. Rings were tested for viability after each experiment with maximally dilating 100 μM papaverine. The drugs 4-aminopyridine (4-AP), glibenclamide, 5-hydroxydecanoate, ouabain, 8-(3-chlorostyryl) caffeine and PSB-0788 were examined. RESULTS: All drugs tested had no significant effect on basal tension. Lidocaine relaxation in intact rings was biphasic between 1 and 10 μM (Phase 1) and 10 and 1000 μM (Phase 2). Mechanical removal of the endothelium resulted in further relaxation, and at lower concentrations ring sensitivity (% relaxation per μM lidocaine) significantly increased 3.5 times compared to intact rings. The relaxing factor(s) responsible for enhancing ring relaxation did not appear to be NO- or prostacyclin-dependent, as L-NAME and indomethacin had little or no effect on intact ring relaxation. In denuded rings, lidocaine relaxation was completely abolished by K(v) channel inhibition and significantly reduced by antagonists of the MitoK(ATP) channel, and to a lesser extent the SarcK(ATP) channel. Curiously, A(2a) subtype receptor antagonism significantly inhibited lidocaine relaxation above 100 μM, but not the A(2b) receptor. CONCLUSIONS: We show that lidocaine relaxation in rat thoracic aorta was biphasic and significantly enhanced by endothelial removal, which did not appear to be NO or prostacyclin dependent. The unknown factor(s) responsible for enhanced relaxation was significantly reduced by K(v) inhibition, 5-HD inhibition, and A(2a) subtype inhibition indicating a potential role for crosstalk in lidocaine’s vasoreactivity

    Complications of Diagnostic Radiology

    No full text

    Global treadmilling coordinates actin turnover and controls the size of actin networks

    No full text
    International audienceVarious cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments
    corecore