3 research outputs found

    Characterization of the effects of cross-linking of macrophage CD44 associated with increased phagocytosis of apoptotic PMN

    Get PDF
    Control of macrophage capacity for apoptotic cell clearance by soluble mediators such as cytokines, prostaglandins and lipoxins, serum proteins, and glucocorticoids may critically determine the rate at which inflammation resolves. Previous studies suggested that macrophage capacity for clearance of apoptotic neutrophils was profoundly altered following binding of CD44 antibodies. We have used a number of different approaches to further define the mechanism by which CD44 rapidly and specifically augment phagocytosis of apoptotic neutrophils. Use of Fab ’ fragments unequivocally demonstrated a requirement for cross-linking of macrophage surface CD44. The molecular mechanism of CD44-augmented phagocytosis was shown to be opsonin-independent and to be distinct from the Mer/protein S pathway induced by glucocorticoids and was not functional for clearance of apoptotic eosinophils. CD44-cross-linking also altered macrophage migration and induced cytoskeletal re-organisation together with phosphorylation of paxillin and activation of Rac2. Investigation of signal transduction pathways that might be critical for CD44 augmentation of phagocytosis revealed that Ca 2+ signalling, PI-3 kinase pathways and altered cAMP signalling were not involved, but did implicate a key role for tyrosine phosphorylation events. Finally, although CD44 antibodies were able to augment phagocytosis of apoptotic neutrophils by murine peritoneal and bone marrow-derived macrophages, we did not observe a difference in the clearance of neutrophils following induction of peritonitis with thioglycollate in CD44-deficient animals. Together, these data demonstrate that CD4

    Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD

    No full text
    Eugene Roscioli,1,2 Hubertus PA Jersmann,1,2 Susan Lester,2,3 Arash Badiei,1,2 Andrew Fon,1,2 Peter Zalewski,2,4 Sandra Hodge1,2 1Department of Thoracic Medicine, Royal Adelaide Hospital, 2Department of Medicine, The University of Adelaide, Adelaide, 3Department of Rheumatology, 4Cardiology Unit, The Queen Elizabeth Hospital, Woodville, SA, Australia Abstract: There is now convincing evidence that the airway epithelium drives the pathogenesis of COPD. A major aspect of this is the disease-related reduction in barrier function that is potentiated by dysregulation of tight junction (TJ) protein complexes. However, a significant number of studies using in vitro smoke exposure models have not observed alterations in barrier permeability. We have previously shown that zinc (Zn) is an influential cytoprotective factor for the airway epithelium, and its depletion by cigarette smoke produces disease-related modifications consistent with inflammatory changes in COPD. We hypothesized that Zn deficiency is a significant co-stimulus with cigarette smoke extract (CSE) for potentiating the leaky barrier phenotype exhibited in COPD. We employed an ex vivo model of differentiated human airway epithelium exposed to Zn depletion and CSE to determine the contribution of Zn in maintaining normal epithelial permeability. Western blot analysis demonstrated a significant downregulation of the TJ proteins such as ZO-1 (–1.93-fold, P<0.05) and Claudin-1 (–3.37-fold, P<0.01) with the combination exposure. Assessment of barrier function via paracellular ionic conductance and tracer permeability also showed that Zn depletion was an important factor, which potentiated an increase in epithelial permeability (P<0.001 for both) compared to Zn depletion or CSE exposures in isolation. Visual inspection of the epithelium using transmission electron microscopy revealed a marked reduction in junction complexes between the adjacent airway epithelial cells treated with a combination of Zn depletion and CSE. These observations identify Zn deficiency as a significant codeterminant with CSE as a factor leading to an increase in airway epithelial permeability. Hence, as Zn dyshomeostasis has been reported in the airway epithelium exposed to chronic cigarette smoke and inflammation, targeting these phenomena may represent a promising strategy to ameliorate the leaky barrier phenotype that is synonymous with COPD. Keywords: COPD, airway epithelium, barrier function, cigarette smoke, zin
    corecore