9 research outputs found

    RNAi screening identifies Trypanosoma brucei stress response protein kinases required for survival in the mouse

    Get PDF
    Protein kinases (PKs) are a class of druggable targets in Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (sleeping sickness), yet little is known about which PKs are essential for survival in mammals. A recent kinome-wide RNAi screen with 176 individual bloodstream form Trypanosoma brucei lines identified PKs required for proliferation in culture. In order to assess which PKs are also potential virulence factors essential in vivo, lines were pooled, inoculated into mice, and screened for loss of fitness after 48 h RNAi. The presence of trypanosomes in the bloodstream was assessed using RNAi target sequencing (RITseq) and compared to growth in culture. We identified 49 PKs with a significant loss of fitness in vivo in two independent experiments, and a strong correlation between in vitro and in vivo loss of fitness for the majority. Nine PKs had a more pronounced growth defect in vivo, than in vitro. Amongst these PKs were several with putative functions related to stress responses mediated through the PI3K/TOR or MAPK signaling cascades, which act to protect the parasite from complement-mediated and osmotic lysis. Identification of these virulence-associated PKs provides new insights into T. brucei-host interaction and reveals novel potential protein kinase drug targets

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    Triacylglycerol storage in lipid droplets in procyclic Trypanosoma brucei

    Get PDF
    Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. beta-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFE alpha 1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFE alpha 1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFE alpha 1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Delta tfe alpha 1/Delta tfe alpha 1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Delta tfe alpha 1/Delta tfe alpha 1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse

    Cell fractionation of parasitic protozoa: a review

    No full text
    corecore