48 research outputs found

    Dexamethasone-induced cisplatin and gemcitabine resistance in lung carcinoma samples treated ex vivo

    Get PDF
    Chemotherapy for lung cancer not only has severe side effects but frequently also exhibits limited, if any clinical effectiveness. Dexamethasone (DEX) and similar glucocorticoids (GCs) such as prednisone are often used in the clinical setting, for example, as cotreatment to prevent nausea and other symptoms. Clinical trials evaluating the impact of GCs on tumour control and patient survival of lung carcinoma have never been performed. Therefore, we isolated cancer cells from resected lung tumour specimens and treated them with cisplatin in the presence or absence of DEX. Cell number of viable and dead cells was evaluated by trypan blue exclusion and viability was measured by the MTT-assay. We found that DEX induced resistance toward cisplatin in all of 10 examined tumour samples. Similar results were found using gemcitabine as cytotoxic drug. Survival of drug-treated lung carcinoma cells in the presence of DEX was longlasting as examined 2 and 3 weeks after cisplatin treatment of a lung carcinoma cell line. These data corroborate recent in vitro and in vivo xenograft findings and rise additional concerns about the widespread combined use of DEX with antineoplastic drugs in the clinical management of patients with lung cancer

    Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer

    Get PDF
    BACKGROUND: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. METHODS: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Anti-apoptotic signaling in response to DEX was examined by Western blot analysis. RESULTS: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. CONCLUSION: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients

    Intensity-modulated radiotherapy of nasopharyngeal carcinoma: a comparative treatment planning study of photons and protons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this treatment planning study was to investigate the potential advantages of intensity-modulated (IM) proton therapy (IMPT) compared with IM photon therapy (IMRT) in nasopharyngeal carcinoma (NPC).</p> <p>Methods</p> <p>Eight NPC patients were chosen. The dose prescriptions in cobalt Gray equivalent (Gy<sub>E</sub>) for gross tumor volumes of the primary tumor (GTV-T), planning target volumes of GTV-T and metastatic (PTV-TN) and elective (PTV-N) lymph node stations were 72.6 Gy<sub>E</sub>, 66 Gy<sub>E</sub>, and 52.8 Gy<sub>E</sub>, respectively. For each patient, nine coplanar fields IMRT with step-and-shoot technique and 3D spot-scanned three coplanar fields IMPT plans were prepared. Both modalities were planned in 33 fractions to be delivered with a simultaneous integrated boost technique. All plans were prepared and optimized by using the research version of the inverse treatment planning system KonRad (DKFZ, Heidelberg).</p> <p>Results</p> <p>Both treatment techniques were equal in terms of averaged mean dose to target volumes. IMPT plans significantly improved the tumor coverage and conformation (<it>P </it>< 0.05) and they reduced the averaged mean dose to several organs at risk (OARs) by a factor of 2–3. The low-to-medium dose volumes (0.33–13.2 Gy<sub>E</sub>) were more than doubled by IMRT plans.</p> <p>Conclusion</p> <p>In radiotherapy of NPC patients, three-field IMPT has greater potential than nine-field IMRT with respect to tumor coverage and reduction of the integral dose to OARs and non-specific normal tissues. The practicality of IMPT in NPC deserves further exploration when this technique becomes available on wider clinical scale.</p

    Influence of Caloric Restriction on Constitutive Expression of NF-κB in an Experimental Mouse Astrocytoma

    Get PDF
    Many of the current standard therapies employed for the management of primary malignant brain cancers are largely viewed as palliative, ultimately because these conventional strategies have been shown, in many instances, to decrease patient quality of life while only offering a modest increase in the length of survival. We propose that caloric restriction (CR) is an alternative metabolic therapy for brain cancer management that will not only improve survival but also reduce the morbidity associated with disease. Although we have shown that CR manages tumor growth and improves survival through multiple molecular and biochemical mechanisms, little information is known about the role that CR plays in modulating inflammation in brain tumor tissue.Phosphorylation and activation of nuclear factor κB (NF-κB) results in the transactivation of many genes including those encoding cycloxygenase-2 (COX-2) and allograft inflammatory factor-1 (AIF-1), both of which are proteins that are primarily expressed by inflammatory and malignant cancer cells. COX-2 has been shown to enhance inflammation and promote tumor cell survival in both in vitro and in vivo studies. In the current report, we demonstrate that the p65 subunit of NF-κB was expressed constitutively in the CT-2A tumor compared with contra-lateral normal brain tissue, and we also show that CR reduces (i) the phosphorylation and degree of transcriptional activation of the NF-κB-dependent genes COX-2 and AIF-1 in tumor tissue, as well as (ii) the expression of proinflammatory markers lying downstream of NF-κB in the CT-2A malignant mouse astrocytoma, [e.g. macrophage inflammatory protein-2 (MIP-2)]. On the whole, our date indicate that the NF-κB inflammatory pathway is constitutively activated in the CT-2A astrocytoma and that CR targets this pathway and inflammation.CR could be effective in reducing malignant brain tumor growth in part by inhibiting inflammation in the primary brain tumor

    Spot-scanning proton radiation therapy for extra-cranial chordoma

    No full text

    Spot-Scanning Proton Radiation Therapy for Extra-Cranial Chondrosarcoma

    No full text
    corecore