53 research outputs found
Spectral weight transfer in a disorder-broadened Landau level
In the absence of disorder, the degeneracy of a Landau level (LL) is
, where is the magnetic field, is the area of the sample
and is the magnetic flux quantum. With disorder, localized states
appear at the top and bottom of the broadened LL, while states in the center of
the LL (the critical region) remain delocalized. This well-known phenomenology
is sufficient to explain most aspects of the Integer Quantum Hall Effect (IQHE)
[1]. One unnoticed issue is where the new states appear as the magnetic field
is increased. Here we demonstrate that they appear predominantly inside the
critical region. This leads to a certain ``spectral ordering'' of the localized
states that explains the stripes observed in measurements of the local inverse
compressibility [2-3], of two-terminal conductance [4], and of Hall and
longitudinal resistances [5] without invoking interactions as done in previous
work [6-8].Comment: 5 pages 3 figure
Dielectric and thermal relaxation in the energy landscape
We derive an energy landscape interpretation of dielectric relaxation times
in undercooled liquids, comparing it to the traditional Debye and
Gemant-DiMarzio-Bishop pictures. The interaction between different local
structural rearrangements in the energy landscape explains qualitatively the
recently observed splitting of the flow process into an initial and a final
stage. The initial mechanical relaxation stage is attributed to hopping
processes, the final thermal or structural relaxation stage to the decay of the
local double-well potentials. The energy landscape concept provides an
explanation for the equality of thermal and dielectric relaxation times. The
equality itself is once more demonstrated on the basis of literature data for
salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems,
Molveno 2006, submitted to Philosophical Magazin
Distinct Expression Profiles and Different Functions of Odorant Binding Proteins in Nilaparvata lugens StĂĄl
Background: Odorant binding proteins (OBPs) play important roles in insect olfaction. The brown planthopper (BPH), Nilaparvata lugens StaËšl (Delphacidae, Auchenorrhyncha, Hemiptera) is one of the most important rice pests. Its monophagy (only feeding on rice), wing form (long and short wing) variation, and annual long distance migration (seeking for rice plants of high nutrition) imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect. Methodology/Principal Findings: Full length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival. Conclusions: NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target fo
- …