24,695 research outputs found
Improved method of optical design
Optical system designed by third order aberration theory is significantly improved by placing it into a ray deviation design program composed of two distinct computer programs. Tests were conducted on telescope systems, an ultraviolet relay lens, and a four lens corrector system
General optics evaluation program (GENOPTICS)
Program prints and plots results of computations such as ray traces, radial energy distributions, and designs of two-mirror telescopes
Microstrip antennas
It is possible to design and construct simple, efficient microwave antenna, either linearly or circularly polarized, which should be useful in phased arrays. Mounted on thin dielectric substrate, it extends slightly above ground plane. Space behind ground plane is required for feed line and mounting hardware
Ray tracing program with options for diffraction gratings
Diffraction theory, developed in vectorial form and coded into ray tracing routines, permits tracing rays of any wavelength through surfaces that are plane, spherical, conical, or aspheric polynomial. Ruled diffraction gratings may run in either X-direction or Y-direction, where Z is optical axis
Fringe Science: Defringing CCD Images with Neon Lamp Flat Fields
Fringing in CCD images is troublesome from the aspect of photometric quality
and image flatness in the final reduced product. Additionally, defringing
during calibration requires the inefficient use of time during the night to
collect and produce a "supersky" fringe frame. The fringe pattern observed in a
CCD image for a given near-IR filter is dominated by small thickness variations
across the detector with a second order effect caused by the wavelength extent
of the emission lines within the bandpass which produce the interference
pattern. We show that essentially any set of emission lines which generally
match the wavelength coverage of the night sky emission lines within a bandpass
will produce an identical fringe pattern. We present an easy, inexpensive, and
efficient method which uses a neon lamp as a flat field source and produces
high S/N fringe frames to use for defringing an image during the calibration
process.Comment: accepted to PAS
Device for directionally controlling electromagnetic radiation Patent
Concentrator device for controlling direction of solar energy onto energy converter
Directional control of radiant heat
Surface with grooves having flat bases gives directional emissivities and absorptivities that can be made to approximate a perfect directional surface. Radiant energy can then be transferred in desired directions
On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity
We consider the free boundary problem for the evolution of a nearly straight slender fibre of viscous fluid. The motion is driven by prescribing the velocity of the ends of the fibre, and the free surface evolves under the action of surface tension, inertia and gravity. The three-dimensional Navier-Stokes equations and free-surface boundary conditions are analysed asymptotically, using the fact that the inverse aspect ratio, defined to be the ratio between a typical fibre radius and the initial fibre length, is small. This first part of the paper follows earlier work on the stretching of a slender viscous fibre with negligible surface tension effects. The inclusion of surface tension seriously complicates the problem for the evolution of the shape of the cross-section. We adapt ideas applied previously to two-dimensional Stokes flow to show that the shape of the cross-section can be described by means of a conformal map which depends on time and distance along the fibre axis. We give some examples of suitable relevant maps and present numerical solutions of the resulting equations. We also use analytic methods to examine the coupling between stretching and the evolution of the cross-section shape
- …