22,616 research outputs found

    On the size of approximately convex sets in normed spaces

    Full text link
    Let X be a normed space. A subset A of X is approximately convex if d(ta+(1t)b,A)1d(ta+(1-t)b,A) \le 1 for all a,bAa,b \in A and t[0,1]t \in [0,1] where d(x,A)d(x,A) is the distance of xx to AA. Let \Co(A) be the convex hull and \diam(A) the diameter of AA. We prove that every nn-dimensional normed space contains approximately convex sets AA with \mathcal{H}(A,\Co(A))\ge \log_2n-1 and \diam(A) \le C\sqrt n(\ln n)^2, where H\mathcal{H} denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0D>0, we construct worst possible approximately convex sets in C[0,1]C[0,1] such that \mathcal{H}(A,\Co(A))=\diam(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.Comment: 32 pages. See also http://www.math.sc.edu/~howard

    Extremal Approximately Convex Functions and Estimating the Size of Convex Hulls

    Get PDF
    A real valued function ff defined on a convex KK is anemconvex function iff it satisfies f((x+y)/2)(f(x)+f(y))/2+1. f((x+y)/2) \le (f(x)+f(y))/2 + 1. A thorough study of approximately convex functions is made. The principal results are a sharp universal upper bound for lower semi-continuous approximately convex functions that vanish on the vertices of a simplex and an explicit description of the unique largest bounded approximately convex function~EE vanishing on the vertices of a simplex. A set AA in a normed space is an approximately convex set iff for all a,bAa,b\in A the distance of the midpoint (a+b)/2(a+b)/2 to AA is 1\le 1. The bounds on approximately convex functions are used to show that in Rn\R^n with the Euclidean norm, for any approximately convex set AA, any point zz of the convex hull of AA is at a distance of at most [log2(n1)]+1+(n1)/2[log2(n1)][\log_2(n-1)]+1+(n-1)/2^{[\log_2(n-1)]} from AA. Examples are given to show this is the sharp bound. Bounds for general norms on RnR^n are also given.Comment: 39 pages. See also http://www.math.sc.edu/~howard

    The quantum Bell-Ziv-Zakai bounds and Heisenberg limits for waveform estimation

    Get PDF
    We propose quantum versions of the Bell-Ziv-Zakai lower bounds on the error in multiparameter estimation. As an application we consider measurement of a time-varying optical phase signal with stationary Gaussian prior statistics and a power law spectrum 1/ωp\sim 1/|\omega|^p, with p>1p>1. With no other assumptions, we show that the mean-square error has a lower bound scaling as 1/N2(p1)/(p+1)1/{\cal N}^{2(p-1)/(p+1)}, where N{\cal N} is the time-averaged mean photon flux. Moreover, we show that this accuracy is achievable by sampling and interpolation, for any p>1p>1. This bound is thus a rigorous generalization of the Heisenberg limit, for measurement of a single unknown optical phase, to a stochastically varying optical phase.Comment: 18 pages, 6 figures, comments welcom

    Some Aspects of Power and Independence in Management

    Get PDF
    corecore