69 research outputs found

    Macrophage mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes

    Get PDF
    Objective- The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear. Methods and Results- We transplanted wild-type (WT), Mal1, or aP2 bone marrow into low-density lipoprotein receptor-null (LDLR) mice and fed them a Western diet for 8 weeks. Mal1→LDLR mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT→LDLR mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-γ (PPARγ) activity and upregulation of a PPARγ-related cholesterol trafficking gene, CD36. Mal1 macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1→LDLR mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT→LDLR mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1→LDLR mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes. Conclusion- Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPARγ activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions. © 2011 American Heart Association, Inc

    Jnk1 deficiency in hematopoietic cells suppresses macrophage apoptosis and increases atherosclerosis in low-density lipoprotein receptor null mice

    Get PDF
    Objective - The c-Jun NH 2 -terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis. Approach and Results - To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr-/- mice were reconstituted with wild-type, Jnk1-/-, and Jnk2-/- hematopoietic cells and fed a high cholesterol diet. Jnk1-/- →Ldlr-/- mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2-/- cells. Moreover, genetic ablation of JNK to a single allele (Jnk1+/- /Jnk2-/- or Jnk1-/- /Jnk2+/-) in marrow of Ldlr-/- recipients further increased atherosclerosis compared with Jnk1-/- →Ldlr-/- and wild-type→Ldlr-/- mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1-/- macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways. Conclusions - Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis. © 2016 American Heart Association, Inc

    Obesity, inflammation, and insulin resistance

    Full text link

    Adiponectin and risk of coronary heart disease (Reply)

    No full text

    Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers

    No full text
    This study investigated the relationship between physical activity and the obesity-related inflammatory markers C-reactive protein, interleukin-6, and soluble tumor necrosis factor receptors (sTNF-Rs) 1 and 2. Furthermore, we examined the relationship between physical activity and insulin sensitivity (insulin, C-peptide, and hemoglobin A(1c) levels) and whether inflammatory markers mediate this association

    Association between dietary factors and plasma adiponectin concentrations in men

    No full text
    Adiponectin, an adipocyte-derived peptide, improves insulin sensitivity, has antiinflammatory and antiatherogenic effects, and is associated with a lower risk of ischemic heart disease (IHD) and type 2 diabetes. However, little is known about dietary predictors of plasma adiponectin concentrations in humans
    corecore