329 research outputs found

    Cancer of the ampulla of Vater: analysis of the whole genome sequence exposes a potential therapeutic vulnerability

    Get PDF
    BACKGROUND: Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scale clinical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise only about 0.2% of gastrointestinal cancers. Consequently, they are often treated as either distal common bile duct or pancreatic cancers. METHODS: We analyzed DNA from a resected cancer of the ampulla of Vater and whole blood DNA from a 63 year-old man who underwent a pancreaticoduodenectomy by whole genome sequencing, achieving 37Γ— and 40Γ— coverage, respectively. We determined somatic mutations and structural alterations. RESULTS: We identified relevant aberrations, including deleterious mutations of KRAS and SMAD4 as well as a homozygous focal deletion of the PTEN tumor suppressor gene. These findings suggest that these tumors have a distinct oncogenesis from either common bile duct cancer or pancreatic cancer. Furthermore, this combination of genomic aberrations suggests a therapeutic context for dual mTOR/PI3K inhibition. CONCLUSIONS: Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers

    Pathophysiology of focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a major cause of idiopathic steroid-resistant nephrotic syndrome (SRNS) and end-stage kidney disease (ESKD). In recent years, animal models and studies of familial forms of nephrotic syndrome helped elucidate some mechanisms of podocyte injury and disease progression in FSGS. This article reviews some of the experimental and clinical data on the pathophysiology of FSGS

    Down-Regulation of Yes Associated Protein 1 Expression Reduces Cell Proliferation and Clonogenicity of Pancreatic Cancer Cells

    Get PDF
    BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1) is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed) test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells

    Chronic kidney disease care delivered by US family medicine and internal medicine trainees: results from an online survey

    Get PDF
    BACKGROUND: Complications of chronic kidney disease (CKD) contribute to morbidity and mortality. Consequently, treatment guidelines have been developed to facilitate early detection and treatment. However, given the high prevalence of CKD, many patients with early CKD are seen by non-nephrologists, who need to be aware of CKD complications, screening methods and treatment goals in order to initiate timely therapy and referral. METHODS: We performed a web-based survey to assess perceptions and practice patterns in CKD care among 376 family medicine and internal medicine trainees in the United States. Questions were focused on the identification of CKD risk factors, screening for CKD and associated co-morbidities, as well as management of anemia and secondary hyperparathyroidism in patients with CKD. RESULTS: Our data show that CKD risk factors are not universally recognized, screening for CKD complications is not generally taken into consideration, and that the management of anemia and secondary hyperparathyroidism poses major diagnostic and therapeutic difficulties for trainees. CONCLUSION: Educational efforts are needed to raise awareness of clinical practice guidelines and recommendations for patients with CKD among future practitioners

    pp32 (ANP32A) Expression Inhibits Pancreatic Cancer Cell Growth and Induces Gemcitabine Resistance by Disrupting HuR Binding to mRNAs

    Get PDF
    The expression of protein phosphatase 32 (PP32, ANP32A) is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1), a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C), but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK), causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR), while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy

    Paired Tumor and Normal Whole Genome Sequencing of Metastatic Olfactory Neuroblastoma

    Get PDF
    Olfactory neuroblastoma (ONB) is a rare cancer of the sinonasal tract with little molecular characterization. We performed whole genome sequencing (WGS) on paired normal and tumor DNA from a patient with metastatic-ONB to identify the somatic alterations that might be drivers of tumorigenesis and/or metastatic progression.Genomic DNA was isolated from fresh frozen tissue from a metastatic lesion and whole blood, followed by WGS at >30X depth, alignment and mapping, and mutation analyses. Sanger sequencing was used to confirm selected mutations. Sixty-two somatic short nucleotide variants (SNVs) and five deletions were identified inside coding regions, each causing a non-synonymous DNA sequence change. We selected seven SNVs and validated them by Sanger sequencing. In the metastatic ONB samples collected several months prior to WGS, all seven mutations were present. However, in the original surgical resection specimen (prior to evidence of metastatic disease), mutations in KDR, MYC, SIN3B, and NLRC4 genes were not present, suggesting that these were acquired with disease progression and/or as a result of post-treatment effects.This work provides insight into the evolution of ONB cancer cells and provides a window into the more complex factors, including tumor clonality and multiple driver mutations

    MED12 Alterations in Both Human Benign and Malignant Uterine Soft Tissue Tumors

    Get PDF
    The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/Ξ²-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and Ξ²-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors

    The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs).</p> <p>Methods</p> <p>The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established.</p> <p>Results</p> <p>We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, <it>CD9 </it>and <it>CALM2 </it>mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis.</p> <p>Conclusion</p> <p>This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment.</p

    Pneumococcal Capsular Polysaccharide Structure Predicts Serotype Prevalence

    Get PDF
    There are 91 known capsular serotypes of Streptococcus pneumoniae. The nasopharyngeal carriage prevalence of particular serotypes is relatively stable worldwide, but the host and bacterial factors that maintain these patterns are poorly understood. Given the possibility of serotype replacement following vaccination against seven clinically important serotypes, it is increasingly important to understand these factors. We hypothesized that the biochemical structure of the capsular polysaccharides could influence the degree of encapsulation of different serotypes, their susceptibility to killing by neutrophils, and ultimately their success during nasopharyngeal carriage. We sought to measure biological differences among capsular serotypes that may account for epidemiological patterns. Using an in vitro assay with both isogenic capsule-switch variants and clinical carriage isolates, we found an association between increased carriage prevalence and resistance to non-opsonic neutrophil-mediated killing, and serotypes that were resistant to neutrophil-mediated killing tended to be more heavily encapsulated, as determined by FITC-dextran exclusion. Next, we identified a link between polysaccharide structure and carriage prevalence. Significantly, non-vaccine serotypes that have become common in vaccinated populations tend to be those with fewer carbons per repeat unit and low energy expended per repeat unit, suggesting a novel biological principle to explain patterns of serotype replacement. More prevalent serotypes are more heavily encapsulated and more resistant to neutrophil-mediated killing, and these phenotypes are associated with the structure of the capsular polysaccharide, suggesting a direct relationship between polysaccharide biochemistry and the success of a serotype during nasopharyngeal carriage and potentially providing a method for predicting serotype replacement
    • …
    corecore