2,543 research outputs found
On the importance of testing gravity at distances less than 1cm
If the mechanism responsible for the smallness of the vacuum energy is
consistent with local quantum field theory, general arguments suggest the
existence of at least one unobserved scalar particle with Compton wavelength
bounded from below by one tenth of a millimeter. We show that this bound is
saturated if vacuum energy is a substantial component of the energy density of
the universe. Therefore, the success of cosmological models with a significant
vacuum energy component suggests the existence of new macroscopic forces with
range in the sub-millimeter region. There are virtually no experimental
constraints on the existence of quanta with this range of interaction.Comment: 9 pages TeX, 2 eps figures, uses mtexsis.tex and epsf.tex. Entry in
1996 Gravity Research Foundation essay competition. To be published in the
Journal of General Relativity and Gravitatio
A SQUID-based microwave cavity search for dark-matter axions
Axions in the micro eV mass range are a plausible cold dark matter candidate
and may be detected by their conversion into microwave photons in a resonant
cavity immersed in a static magnetic field. The first result from such an axion
search using a superconducting first-stage amplifier (SQUID) is reported. The
SQUID amplifier, replacing a conventional GaAs field-effect transistor
amplifier, successfully reached axion-photon coupling sensitivity in the band
set by present axion models and sets the stage for a definitive axion search
utilizing near quantum-limited SQUID amplifiers.Comment: 4 pages, 5 figures, submitted to PR
Move of a large but delicate apparatus on a trailer with air-ride suspension
When valuable delicate goods are shipped by truck, attention must be paid to
vibrations that may cause damage. We present a case study of moving an
extremely delicate 6230-kg superconducting magnet, immersed in liquid nitrogen,
from Livermore, CA to Seattle, WA showing the steps of fatigue analysis of the
load, a test move, and acceleration monitoring of the final move to ensure a
successful damage-free transport
A Search for Scalar Chameleons with ADMX
Scalar fields with a "chameleon" property, in which the effective particle
mass is a function of its local environment, are common to many theories beyond
the standard model and could be responsible for dark energy. If these fields
couple weakly to the photon, they could be detectable through the "afterglow"
effect of photon-chameleon-photon transitions. The ADMX experiment was used in
the first chameleon search with a microwave cavity to set a new limit on scalar
chameleon-photon coupling excluding values between 2*10^9 and 5*10^14 for
effective chameleon masses between 1.9510 and 1.9525 micro-eV.Comment: 4 pages, 3 figure
On the nonlinearity interpretation of q- and f-deformation and some applications
q-oscillators are associated to the simplest non-commutative example of Hopf
algebra and may be considered to be the basic building blocks for the symmetry
algebras of completely integrable theories. They may also be interpreted as a
special type of spectral nonlinearity, which may be generalized to a wider
class of f-oscillator algebras. In the framework of this nonlinear
interpretation, we discuss the structure of the stochastic process associated
to q-deformation, the role of the q-oscillator as a spectrum-generating algebra
for fast growing point spectrum, the deformation of fermion operators in
solid-state models and the charge-dependent mass of excitations in f-deformed
relativistic quantum fields.Comment: 11 pages Late
Internet self-efficacy does not predict student use of Internet-mediated educational technology
Two studies tested the hypothesis that use of learning technologies among undergraduate psychology students was associated with higher Internet self-efficacy (ISE). In Study 1, the ISE scores of 86 students were found not to be associated with either attitudes towards, or measured use of, blogs and wikis as part of an IT skills course. ISE was associated with time spent online, and positive attitudes to wikis were associated with higher use. Study 2 measured 163 students’ ISE scores at the beginning and end of the same course. ISE was again not correlated with attitudes towards, or actual measured use of, learning technologies used in the course. However, ISE was shown to increase during the course. Positive attitudes towards wikis and discussion boards were associated with higher use of each. Overall, ISE scores did not influence measured use of a Virtual Learning Environment (VLE, including blogs, wikis and a discussion board), or attitudes towards those technologies. This implies that while ISE is linked to aspects of online behaviour (time spent online) and can be modified by online activity or training, it does not predict student use of educational Internet technologies
Acoustically driven storage of light in a quantum well
The strong piezoelectric fields accompanying a surface acoustic wave on a
semiconductor quantum well structure are employed to dissociate optically
generated excitons and efficiently trap the created electron hole pairs in the
moving lateral potential superlattice of the sound wave. The resulting spatial
separation of the photogenerated ambipolar charges leads to an increase of the
radiative lifetime by orders of magnitude as compared to the unperturbed
excitons. External and deliberate screening of the lateral piezoelectric fields
triggers radiative recombination after very long storage times at a remote
location on the sample.Comment: 4 PostScript figures included, Physical Review Letters, in pres
Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions
We have performed a precise experimental determination of the Casimir
pressure between two gold-coated parallel plates by means of a micromachined
oscillator. In contrast to all previous experiments on the Casimir effect,
where a small relative error (varying from 1% to 15%) was achieved only at the
shortest separation, our smallest experimental error (%) is achieved
over a wide separation range from 170 nm to 300 nm at 95% confidence. We have
formulated a rigorous metrological procedure for the comparison of experiment
and theory without resorting to the previously used root-mean-square deviation,
which has been criticized in the literature. This enables us to discriminate
among different competing theories of the thermal Casimir force, and to resolve
a thermodynamic puzzle arising from the application of Lifshitz theory to real
metals. Our results lead to a more rigorous approach for obtaining constraints
on hypothetical long-range interactions predicted by extra-dimensional physics
and other extensions of the Standard Model. In particular, the constraints on
non-Newtonian gravity are strengthened by up to a factor of 20 in a wide
interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar
on Gravitation and Cosmolog
Nonlinear acousto-electric transport in a two-dimensional electron system
We study both theoretically and experimentally the nonlinear interaction
between an intense surface acoustic wave and a two-dimensional electron plasma
in semiconductor-piezocrystal hybrid structures. The experiments on hybrid
systems exhibit strongly nonlinear acousto-electric effects. The plasma turns
into moving electron stripes, the acousto-electric current reaches its maximum,
and the sound absorption strongly decreases. To describe the nonlinear
phenomena, we develop a coupled-amplitude method for a two-dimensional system
in the strongly nonlinear regime of interaction. At low electron densities the
absorption coefficient decreases with increasing sound intensity, whereas at
high electron density the absorption coefficient is not a monotonous function
of the sound intensity. High-harmonic generation coefficients as a function of
the sound intensity have a nontrivial behavior. Theory and experiment are found
to be in a good agreement.Comment: 27 pages, 6 figure
- …
