18 research outputs found

    Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning

    Get PDF
    Successful hematopoietic stem cell (HSC) transplantation requires donor HSC engraftment within specialized bone marrow microenvironments known as HSC niches. We have previously reported a profound remodeling of the endosteal osteoblastic HSC niche after total body irradiation (TBI), defined as relocalization of surviving megakaryocytes to the niche site and marked expansion of endosteal osteoblasts. We now demonstrate that host megakaryocytes function critically in expansion of the endosteal niche after preparative radioablation and in the engraftment of donor HSC. We show that TBI-induced migration of megakaryocytes to the endosteal niche depends on thrombopoietin signaling through the c-MPL receptor on megakaryocytes, as well as CD41 integrin-mediated adhesion. Moreover, niche osteoblast proliferation post-TBI required megakaryocyte-secreted platelet-derived growth factor-BB. Furthermore, blockade of c-MPL-dependent megakaryocyte migration and function after TBI resulted in a significant decrease in donor HSC engraftment in primary and competitive secondary transplantation assays. Finally, we administered thrombopoietin to mice beginning 5 days before marrow radioablation and ending 24 hours before transplant to enhance megakaryocyte function post-TBI, and found that this strategy significantly enhanced donor HSC engraftment, providing a rationale for improving hematopoietic recovery and perhaps overall outcome after clinical HSC transplantation.Successful hematopoietic stem cell (HSC) transplantation requires donor HSC engraftment within specialized bone marrow microenvironments known as HSC niches. We have previously reported a profound remodeling of the endosteal osteoblastic HSC niche after total body irradiation (TBI), defined as relocalization of surviving megakaryocytes to the niche site and marked expansion of endosteal osteoblasts. We now demonstrate that host megakaryocytes function critically in expansion of the endosteal niche after preparative radioablation and in the engraftment of donor HSC. We show that TBI-induced migration of megakaryocytes to the endosteal niche depends on thrombopoietin signaling through the c-MPL receptor on megakaryocytes, as well as CD41 integrin-mediated adhesion. Moreover, niche osteoblast proliferation post-TBI required megakaryocyte-secreted platelet-derived growth factor-BB. Furthermore, blockade of c-MPL-dependent megakaryocyte migration and function after TBI resulted in a significant decrease in donor HSC engraftment in primary and competitive secondary transplantation assays. Finally, we administered thrombopoietin to mice beginning 5 days before marrow radioablation and ending 24 hours before transplant to enhance megakaryocyte function post-TBI, and found that this strategy significantly enhanced donor HSC engraftment, providing a rationale for improving hematopoietic recovery and perhaps overall outcome after clinical HSC transplantation

    IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation

    Get PDF
    The efficiency of hematopoietic stem cell (HSC) engraftment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total-body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraftment of long-term (LT)-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraftment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation.The efficiency of hematopoietic stem cell (HSC) engraft-ment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraft-ment of long-term-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraft-ment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation. © AlphaMed Press

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe

    Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device

    No full text
    Background aims. Mesenchymal stromal cells (MSCs) have been studied as cell therapy to treat a vast array of diseases. In clinical MSC production, the isolated cells must undergo extensive ex vivo expansion to obtain a sufficient dose of MSCs for the investigational treatment. However, extended tissue culture is fraught with potential hazards, including contamination and most worrisome, malignant transformation. Moreover, changes of gene expression with prolonged culture may alter the therapeutic potential of the cells. Therefore, increasing the recovery of MSCs from the freshly harvested bone marrow allowing for less ex vivo expansion would represent a major advance in MSC therapy. Methods. Human bone marrow cells from 8 healthy donors were processed using a marrow filter device and, in parallel, using buoyant density centrifugation by two independent investigators. The initial nucleated cell recovery as well as the final yield, immunophenotype, and trilineage differentiation potential of passage 2 MSCs were examined. Results. The marrow filter device generated significantly greater initial cell recovery requiring less investigator time and resulted in approximately 2.5-fold more MSCs after passage 2. The immunophenotype and differentiation potential of MSCs isolated using the two methods was equivalent and consistent the defining criteria. The two independent investigators generated comparable results. Conclusions. This novel filter device is a fast, efficient, and reliable system to isolate MSCs and should greatly expedite preclinical and clinical investigations of MSC therapy.Background aims. Mesenchymal stromal cells (MSCs) have been studied as cell therapy to treat a vast array of diseases. In clinical MSC production, the isolated cells must undergo extensive ex vivo expansion to obtain a sufficient dose of MSCs for the investigational treatment. However, extended tissue culture is fraught with potential hazards, including contamination and malignant transformation. Changes of gene expression with prolonged culture may alter the therapeutic potential of the cells. Increasing the recovery of MSCs from the freshly harvested bone marrow allowing for less ex vivo expansion would represent a major advance in MSC therapy. Methods. Human bone marrow cells from eight healthy donors were processed using a marrow filter device and, in parallel, using buoyant density centrifugation by two independent investigators. The initial nucleated cell recovery and the final yield, immunophenotype and trilineage differentiation potential of second-passage MSCs were examined. Results. The marrow filter device generated significantly greater initial cell recovery requiring less investigator time and resulted in approximately 2.5-fold more MSCs after the second passage. The immunophenotype and differentiation potential of MSCs isolated using the two methods were equivalent and consistent with the defining criteria. The two independent investigators generated comparable results. Conclusions. This novel filter device is a fast, efficient and reliable system to isolate MSCs and should greatly expedite pre-clinical and clinical investigations of MSC therapy. © 2013, International Society for Cellular Therapy

    Mesenchymal stromal/stem cells markers in the human bone marrow

    No full text
    Mesenchymal stromal/stem cells (MSCs) can be isolated from human bone marrow (BM), expanded ex vivo and identified via numerous surface antigens. Despite the importance of these cells in regenerative therapy programs, it is unclear whether the cell membrane signature defining MSC preparations ex vivo is determined during culture or may reflect an in vivo counterpart. BM-MSC phenotype in vivo requires further investigation.To characterize cells in their natural BM environment, we performed multi-parametric immunohistochemistry on trabecular bone biopsy specimens from multiple donors and described cells by different morphology and micro-anatomic localization in relationship to a precise pattern of MSC antigen expression.Microscopically examined high-power field marrow sections revealed an overlapping in vivo expression of antigens characterizing ex vivo expanded BM-MSCs, including CD10, CD73, CD140b, CD146, GD2 and CD271. Expanding this panel to proteins associated with pluripotency, such as Oct4, Nanog and SSEA-4, we were able to identify different cellular populations in the human trabecular bone and BM expressing different progenitor cell markers.Targeting several multipotency and pluripotency markers, we found that the BM contains identifiable and distinct progenitor cells further justifying their introduction for a wide range of applications in regenerative medicine.Background aims. Mesenchymal stromal/stem cells (MSCs) can be isolated from human bone marrow (BM), expanded ex vivo and identified via numerous surface antigens. Despite the importance of these cells in regenerative therapy programs, it is unclear whether the cell membrane signature defining MSC preparations ex vivo is determined during culture or may reflect an in vivo counterpart. BM-MSC phenotype in vivo requires further investigation. Methods. To characterize cells in their natural BM environment, we performed multi-parametric immunohistochemistry on trabecular bone biopsy specimens from multiple donors and described cells by different morphology and micro-anatomic localization in relationship to a precise pattern of MSC antigen expression. Results. Microscopically examined high-power field marrow sections revealed an overlapping in vivo expression of antigens characterizing ex vivo expanded BM-MSCs, including CD10, CD73, CD140b, CD146, GD2 and CD271. Expanding this panel to proteins associated with pluripotency, such as Oct4, Nanog and SSEA-4, we were able to identify different cellular populations in the human trabecular bone and BM expressing different progenitor cell markers. Conclusions. Targeting several multipotency and pluripotency markers, we found that the BM contains identifiable and distinct progenitor cells further justifying their introduction for a wide range of applications in regenerative medicine. © 2013, International Society for Cellular Therapy

    Mesenchymal progenitors aging highlights a mir-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis

    Get PDF
    Human aging is associated with a decrease in tissue functions combined with a decline in stem cells frequency and activity followed by a loss of regenerative capacity. The molecular mechanisms behind this senescence remain largely obscure, precluding targeted approaches to counteract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors, we identified a specific switch in miRNA expression during aging, revealing a miR-196a upregulation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth factor secretion. These findings, along with the progressive decrease of HOXB7 levels observed during skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior lifetime, providing a better understanding of bone senescence and leading to an optimization of MSC performance

    Mesenchymal progenitors expressing TRAIL induce apoptosis in sarcomas

    No full text
    Sarcomas are frequent tumors in children and young adults that, despite a relative chemo-sensitivity, show high relapse rates with up to 80% of metastatic patients dying in 5 years from diagnosis. The real ontogeny of sarcomas is still debated and evidences suggest they may derive from precursors identified within mesenchymal stromal/stem cells (MSC) fractions. Recent studies on sarcoma microenvironment additionally indicated that MSC could take active part in generation of a supportive stroma. Based on this knowledge, we conceived to use modified MSC to deliver tumor necrosis factor related apoptosis inducing ligand (TRAIL) targeting different sarcoma histotypes. Gene modified MSC expressing TRAIL were co-cultured with different osteosarcoma, rhabdomyosarcoma and Ewing's Sarcoma (ES) cell lines assessing viability and caspase-8 activation. An in vivo model focused on ES was then implemented considering the impact of MSC-TRAIL on tumor size, apoptosis and angiogenesis. MSC expressing TRAIL induced significantly high apoptosis in all tested lines. Sarcoma death was specifically associated with caspase-8 activation starting from 8 hours of co-culture with MSC-TRAIL. When injected into pre-established ES xenotransplants, MSC-TRAIL persisted within its stroma, causing significant tumor apoptosis versus control groups. Additional histological and in vitro studies reveal that MSC-TRAIL could also exert potent anti-angiogenic functions. Our results suggest that MSC as TRAIL vehicles could open novel therapeutic opportunities for sarcoma by multiple mechanisms

    Effect of postremission therapy before reduced-intensity conditioning allogeneic transplantation for acute myeloid leukemia in first complete remission

    Get PDF
    The impact of pre transplant (HCT) cytarabine consolidation therapy on post HCT outcomes has yet to be evaluated after reduced intensity or non-myeloablative conditioning. We analyzed 604 adults with acute myeloid leukemia (AML) in first complete remission (CR1) reported to the CIBMTR who received a RIC or NMA HCT from an HLA-identical sibling, HLA-matched unrelated donor (URD), or umbilical cord blood (UCB) donor in 2000-2010. We compared transplant outcomes based on exposure to cytarabine post remission consolidation. Three year survival rates were 36% (29-43%, 95% CI) in the no consolidation arm and 42% (37-47%, 95% CI) in the cytarabine consolidation arm (p=0.16). Disease free survival was 34% (27-41%, 95% CI) and 41% (35-46%, 95% CI) (p=0.15), respectively. Three year cumulative incidences of relapse were 37% (30-44%, 95% CI) and 38% (33-43%, 95% CI), respectively (p=0.80). Multivariate regression confirmed no effect of consolidation on relapse, DFS and survival. Prior to RIC/NMA HCT, these data suggest pre-HCT consolidation cytarabine does not significantly alter outcomes and support prompt transition to transplant as soon as morphologic CR1 is attained. If HCT is delayed while identifying a donor, our data suggest that consolidation does not increase transplant TRM and is reasonable if required
    corecore