12 research outputs found

    Performance of Scanning Near-Field Optical Microscope Probes with Single Groove and Various Metal Coatings

    Get PDF
    We investigate the performance of a simple corrugated aperture scanning near-field optical microscope (SNOM) probe with various cladding metals. The probes have only one corrugation, however, they offer increased transmission over both uncorrugated probes and those with many grooves. Enhancement of light throughput results from excitation of surface plasmons at the corrugation at the core–cladding interface. We show how the choice of metal influences radiation properties of grooved probes

    Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors

    Get PDF
    We report the fabrication and the characterization of the refractometric and thermo-optical properties of a quasi-one-dimensional waveguide photonic crystal - a strong, 76-ÎŒm-long Bragg grating. The transmission spectra (around 660 nm) of the structure have been measured as a function of both the cladding refractive index and the temperature. The transmission stopband was found to shift by 0.8-nm wavelength for either a cladding refractive index change of 0.05 or a temperature change of 120 K. The steep stopband edges provide a sensitive detection method for this band shift, by monitoring the transmitted output powe

    Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy

    No full text
    Advances in silicon photonics have resulted in rapidly increasing complexity of integrated circuits. New methods are desirable that allow direct characterization of individual optical components in-situ, without the need for additional fabrication steps or test structures. Here, we present a new device-level method for characterization of photonic chips based on a highly localized modulation in the device using pulsed laser excitation. Optical pumping perturbs the refractive index of silicon, providing a spatially and temporally localized modulation in the transmitted light enabling time- and frequency-resolved imaging. We demonstrate the versatility of this all-optical modulation technique in imaging and in quantitative characterization of a variety of properties of silicon photonic devices, ranging from group indices in waveguides, quality factors of a ring resonator to the mode structure of a multimode interference device. Ultrafast photomodulation spectroscopy provides important information on devices of complex design, and is easily applicable for testing on the device-level
    corecore