50,153 research outputs found

    Radiation generated by accelerating and rotating charged black holes in (anti-)de Sitter space

    Full text link
    Asymptotic behaviour of gravitational and electromagnetic fields of exact type D solutions from the large Plebanski-Demianski family of black hole spacetimes is analyzed. The amplitude and directional structure of radiation is evaluated in cases when the cosmological constant is non-vanishing, so that the conformal infinities have either de Sitter-like or anti-de Sitter-like character. In particular, explicit relations between the parameters that characterize the sources (that is their mass, electric and magnetic charges, NUT parameter, rotational parameter, and acceleration) and properties of the radiation generated by them are presented. The results further elucidate the physical interpretation of these solutions and may help to understand radiative characteristics of more general spacetimes than those that are asymptotically flat.Comment: 24 pages, 18 figures. To appear in Classical and Quantum Gravit

    Bias Voltage and Temperature Dependence of Hot Electron Magnetotransport

    Full text link
    We present a qualitative model study of energy and temperature dependence of hot electron magnetotransport. This model calculations are based on a simple argument that the inelastic scattering strength of hot electrons is strongly spin and energy dependent in the ferromagnets. Since there is no clear experimental data to compare with this model calculations, we are not able to extract clear physics from this model calculations. However, interestingly this calculations display that the magnetocurrent increases with bias voltage showing high magnetocurrent if spin dependent imaginary part of proper self energy effect has a substantial contribution to the hot electron magnetotransport. Along with that, the hot electron magnetotransport is strongly influence by the hot electron spin polarization at finite temperatures

    Mass Terms in Effective Theories of High Density Quark Matter

    Get PDF
    We study the structure of mass terms in the effective theory for quasi-particles in QCD at high baryon density. To next-to-leading order in the 1/pF1/p_F expansion we find two types of mass terms, chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Sch\"afer. We show that to leading order in the coupling constant gg there is no anti-particle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure

    Meissner screening mass in two-flavor quark matter at nonzero temperature

    Get PDF
    We calculate the Meissner screening mass of gluons 4--7 in two-flavor quark matter at nonzero temperature. To this end, we study the effective potential of the 2SC/g2SC phases including a vector condensate andcalculatetheMeissnermassfromthepotentialcurvaturewithrespectto and calculate the Meissner mass from the potential curvature with respect to . We find that the Meissner mass becomes real at the critical temperature which is about the half of the chemical potential mismatch. The phase diagram of the neutral two-flavor color superconductor is presented in the plane of temperature and coupling strength. We indicate the unstable region for gluons 4--7 on the phase diagram.Comment: 4 pages, 3 figures, minor revisions to text, version to appear in PR

    Zero Temperature Chiral Phase Transition in (2+1)-Dimensional QED with a Chern-Simons Term

    Get PDF
    We investigate the zero temperature chiral phase transition in (2+1)-dimensional QED in the presence of a Chern-Simons term, changing the number of fermion flavors. In the symmetric phase, there are no light degrees of freedom even at the critical point. Unlike the case without a Chern-Simons term, the phase transition is first-order.Comment: 7 pages, RevTeX, no figure

    Synthesis and structural characterization of 2Dioxane.2H2O.CuCl2: metal-organic compound with Heisenberg antiferromagnetic S=1/2 chains

    Full text link
    A novel organometallic compound 2Dioxane.CuCl2.2H2O has been synthesized and structurally characterized by X-ray crystallography. Magnetic susceptibility and zero-field inelastic neutron scattering have also been used to study its magnetic properties. It turns out that this material is a weakly coupled one-dimensional S=1/2 Heisenberg antiferromagnetic chain system with chain direction along the crystallographic c axis and the nearest-neighbor intra-chain exchange constant J=0.85(4) meV. The next-nearest-neighbor inter-chain exchange constant J' is also estimated to be 0.05 meV. The observed magnetic excitation spectrum from inelastic neutron scattering is in excellent agreement with numerical calculations based on the Muller ansatz.Comment: 4 pages; 5 figure

    Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 2: User's manual

    Get PDF
    A user's manual which describes input/output routines and recommended operating procedures relating to MAPSEP is presented. Samples runs are included

    Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual

    Get PDF
    The mission analysis program for solar electric propulsion (MAPSEP) is comprised of the basic modes: TOPSEP (trajectory generation), GODSEP (linear error analysis), and SIMSEP (simulation). The program is designed to analyze any low thrust mission with respect to trajectory performance, guidance and navigation, and to provide system related requirements for the purpose of vehicle design. The MAPSEP organization is described along with all models and algorithms. Topics discussed include: trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes
    corecore