39 research outputs found

    Universal oscillations in counting statistics

    Full text link
    Noise is a result of stochastic processes that originate from quantum or classical sources. Higher-order cumulants of the probability distribution underlying the stochastic events are believed to contain details that characterize the correlations within a given noise source and its interaction with the environment, but they are often difficult to measure. Here we report measurements of the transient cumulants > of the number n of passed charges to very high orders (up to m=15) for electron transport through a quantum dot. For large m, the cumulants display striking oscillations as functions of measurement time with magnitudes that grow factorially with m. Using mathematical properties of high-order derivatives in the complex plane we show that the oscillations of the cumulants in fact constitute a universal phenomenon, appearing as functions of almost any parameter, including time in the transient regime. These ubiquitous oscillations and the factorial growth are system-independent and our theory provides a unified interpretation of previous theoretical studies of high-order cumulants as well as our new experimental data.Comment: 19 pages, 4 figures, final version as published in PNA

    Dynamical scaling of the quantum Hall plateau transition

    Full text link
    Using different experimental techniques we examine the dynamical scaling of the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We present a scheme that allows for a simultaneous scaling analysis of these experiments and all other data in literature. We observe a universal scaling function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z = 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri

    A Farewell to Liouvillians

    Full text link
    We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62}, 2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87}, 046801 (2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian perturbation theory and conventional calculations of disorder-averaged products of Green functions and show that each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green function. As a consequence, any Liouvillian approximation scheme may be re-expressed in the language of Green functions. We illustrate these ideas by applying Liouvillian methods, including their extension to NL>1N_L > 1 Liouvillian flavors, to random matrix ensembles, using numerical calculations for small integer NLN_L and an analytic analysis for large NLN_L. We find that behavior at NL>1N_L > 1 is different in qualitative ways from that at NL=1N_L=1. In particular, the NL=N_L = \infty limit expressed using Green functions generates a pathological approximation, in which two-particle correlation functions fail to factorize correctly at large separations of their energy, and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large NLN_L treatment of the quantum Hall plateau transition, showing that the same undesirable features are present there, too

    A New Spin-Orbit Induced Universality Class in the Quantum Hall Regime ?

    Full text link
    Using heuristic arguments and numerical simulations it is argued that the critical exponent ν\nu describing the localization length divergence at the quantum Hall transition is modified in the presence of spin-orbit scattering with short range correlations. The exponent is very close to ν=4/3\nu=4/3, the percolation correlation length exponent, the prediction of a semi-classical argument. In addition, a region of weakly localized regime, where the localization length is exponentially large, is conjectured.Comment: 4 two-column pages including 4 eps figure

    Shot noise in resonant tunneling through a zero-dimensional state with a complex energy spectrum

    Get PDF
    We investigate the noise properties of a GaAs/AlGaAs resonant tunneling structure at bias voltages where the current characteristic is determined by single electron tunneling. We discuss the suppression of the shot noise in the framework of a coupled two-state system. For large bias voltages we observed super-Poissonian shot noise up to values of the Fano factor α10\alpha \approx 10.Comment: 4 pages, 4 figures, accepted for Phys. Rev.

    Dimensional Crossover of Localisation and Delocalisation in a Quantum Hall Bar

    Full text link
    The 2-- to 1--dimensional crossover of the localisation length of electrons confined to a disordered quantum wire of finite width LyL_y is studied in a model of electrons moving in the potential of uncorrelated impurities. An analytical formula for the localisation length is derived, describing the dimensional crossover as function of width LyL_y, conductance gg and perpendicular magnetic field BB . On the basis of these results, the scaling analysis of the quantum Hall effect in high Landau levels, and the delocalisation transition in a quantum Hall wire are reconsidered.Comment: 12 pages, 7 figure

    Integer quantum Hall transition in the presence of a long-range-correlated quenched disorder

    Full text link
    We theoretically study the effect of long-ranged inhomogeneities on the critical properties of the integer quantum Hall transition. For this purpose we employ the real-space renormalization-group (RG) approach to the network model of the transition. We start by testing the accuracy of the RG approach in the absence of inhomogeneities, and infer the correlation length exponent nu=2.39 from a broad conductance distribution. We then incorporate macroscopic inhomogeneities into the RG procedure. Inhomogeneities are modeled by a smooth random potential with a correlator which falls off with distance as a power law, r^{-alpha}. Similar to the classical percolation, we observe an enhancement of nu with decreasing alpha. Although the attainable system sizes are large, they do not allow one to unambiguously identify a cusp in the nu(alpha) dependence at alpha_c=2/nu, as might be expected from the extended Harris criterion. We argue that the fundamental obstacle for the numerical detection of a cusp in the quantum percolation is the implicit randomness in the Aharonov-Bohm phases of the wave functions. This randomness emulates the presence of a short-range disorder alongside the smooth potential.Comment: 10 pages including 6 figures, revised version as accepted for publication in PR

    Theta renormalization, electron-electron interactions and super universality in the quantum Hall regime

    Full text link
    The renormalization theory of the quantum Hall effect relies primarily on the non-perturbative concept of theta renormalization by instantons. Within the generalized non-linear sigma model approach initiated by Finkelstein we obtain the physical observables of the interacting electron gas, formulate the general (topological) principles by which the Hall conductance is robustly quantized and derive - for the first time - explicit expressions for the non-perturbative (instanton) contributions to the renormalization group beta- and gamma- functions. Our results are in complete agreement with the recently proposed idea of super universality which says that the fundamental aspects of the quantum Hall effect are all generic features the instanton vacuum concept in asymptotically free field theory.Comment: ReVTeX, 38 pages, 9 figure
    corecore