2 research outputs found

    The Bioavailability of Astaxanthin Is Dependent on Both the Source and the Isomeric Variants of the Molecule

    Get PDF
    Astaxanthin is a marine carotenoid that has a number of potential health benefits, including a very strong antioxidant potential. Present in the flesh of salmonids and shellfish, its natural sources currently on the market for food supplements come from the algae Haematococcus pluvialis and krill. However other natural sources can be found and may be of interest. Cellular uptake studies were performed on Caco-2/TC7 colonic cells. The cells were cultured on a semi-permeable membrane to create a polarized and functional epithelium, representative of the intestinal barrier. Four sources of astaxanthin were selected and compared; synthetic, natural extracts from bacteria, algae or yeast. Astaxanthin was incorporated at a concentration of 5µM into mixed micelles and applied to cultured cells and concentration of astaxanthin measured by HPLC in both apical and basolateral compartments. Small variations in bioavailability were observed at 3 hours. After 6 hours, only the algae source of astaxanthin was still present in the apical compartment as the esterified form. Structure-activity relationships are further discussed. Animal experiments using yeast and algae sources in different types of matrices confirm the role of source and formulation in the bioavailability potential of astaxanthin

    Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota

    No full text
    Human microbiota-associated (HMA) mice are an important model to study the relationship between liver diseases and intestinal microbiota. We describe a new method to humanize conventional mice based on bowel cleansing with polyethylene glycol followed by fecal microbiota transplantation (FMT) from a human donor. Four successive bowel cleansings were sufficient to empty the intestine and decrease the microbiota by 90%. We then compared four different strategies based on the frequency of FMT over four weeks: (1) twice a week; (2) once a week; (3) two FMTs; (4) one FMT. We were able to transfer human bacteria to mice, irrespective of the strategy used. We detected human bacteria after four weeks, even if only one FMT was performed, but there was a shift of the microbiota over time. FMT twice a week for four weeks was too frequent and perturbed the stability of the newly formed ecosystem. FMT once a week appears to be the best compromise as it allowed engraftment of Faecalibacterium, and a higher diversity of bacteria belonging to the Bacteroidales order. Our easy to establish HMA mouse model could be used as an alternative to classical HMA mice to study the relationship between the liver and the microbiota
    corecore