7 research outputs found

    Phosphorus speciation in the organic layer of two Swedish forest soils 13-24 years after wood ash and nitrogen application

    Get PDF
    Application of wood ash to forests can restore pools of phosphorus (P) and other nutrients, which are removed following whole tree harvesting. Yet, the mechanisms that affect the fate of ash-P in the organic layer are less well known. Previous research into the extent to which ash application leads to increased P solubility in the soil is contradictory. We combined synchrotron P K-edge XANES spectroscopy, mu-XRF microscopy, and chemical ex-tractions to examine the speciation and solubility of P. We studied organic horizons of two long-term field ex-periments, Riddarhyttan (central Sweden), which had received 3, 6, and 9 Mg ash ha -1, and Ro center dot dalund (northern Sweden), where 3 Mg ash ha- 1 had been applied alone or combined with N every-three years since 2003. At the latter site, we also determined P in aboveground tree biomass. Overall, the ash application increased P in the organic layer by between 6 and 28 kg P ha -1, equivalent to 17-39 % of the initial P content in the applied ash. At Ro center dot dalund, there was 4.6 kg Ca-bound P ha- 1 (9.5 %) in the ash treatment compared to 1.6 kg ha- 1 in the ash + N treatment and < 0.4 kg ha- 1 in the N treatment and the control. At Riddarhyttan, only the treatment with the highest ash dose had residual Ca-bound P (3.8 kg ha -1). In contrast, the ash application increased Al-bound P (p < 0.001) with up to 15.6 kg P ha -1. Moreover, the ash increased Olsen-P by up to two times. There was a strong relationship between the concentrations of Olsen-P and Al-bound P (R2 = 0.83, p < 0.001) as well as Fe-bound P (R2 = 0.74, p = 0.003), suggesting that the ash application resulted in an increased amount of relatively soluble P associated with hydroxy-Al and hydroxy-Fe compounds. Further, there was an 18 % increase in P uptake by trees in the ash treatment. By contrast, repeated N fertilization, with or without ash, reduced Olsen-P. The lower P extractability was concomitant with a 39 % increase in plant P uptake in the N treatment, which indicates elevated P uptake in response to higher N availability. Hence, the application of wood ash increased Al-bound P, easily available P, and P uptake. N fertilization, while also increasing tree P uptake, instead decreased easily available P and did not cause a shift in soil P speciation

    Leveraging research infrastructure co-location to evaluate constraints on terrestrial carbon cycling in northern European forests

    Get PDF
    Integrated long-term, in-situ observations are needed to document ongoing environmental change, to "ground-truth" remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location

    Phosphorus speciation in the organic layer of two Swedish forest soils 13–24 years after wood ash and nitrogen application

    Get PDF
    Application of wood ash to forests can restore pools of phosphorus (P) and other nutrients, which are removed following whole tree harvesting. Yet, the mechanisms that affect the fate of ash-P in the organic layer are less well known. Previous research into the extent to which ash application leads to increased P solubility in the soil is contradictory. We combined synchrotron P K-edge XANES spectroscopy, µ-XRF microscopy, and chemical extractions to examine the speciation and solubility of P. We studied organic horizons of two long-term field experiments, Riddarhyttan (central Sweden), which had received 3, 6, and 9 Mg ash ha−1, and Rödålund (northern Sweden), where 3 Mg ash ha−1 had been applied alone or combined with N every-three years since 2003. At the latter site, we also determined P in aboveground tree biomass. Overall, the ash application increased P in the organic layer by between 6 and 28 kg P ha−1, equivalent to 17–39 % of the initial P content in the applied ash. At Rödålund, there was 4.6 kg Ca-bound P ha−1 (9.5 %) in the ash treatment compared to 1.6 kg ha−1 in the ash + N treatment and < 0.4 kg ha−1 in the N treatment and the control. At Riddarhyttan, only the treatment with the highest ash dose had residual Ca-bound P (3.8 kg ha−1). In contrast, the ash application increased Al-bound P (p < 0.001) with up to 15.6 kg P ha−1. Moreover, the ash increased Olsen-P by up to two times. There was a strong relationship between the concentrations of Olsen-P and Al-bound P (R2 = 0.83, p < 0.001) as well as Fe-bound P (R2 = 0.74, p = 0.003), suggesting that the ash application resulted in an increased amount of relatively soluble P associated with hydroxy-Al and hydroxy-Fe compounds. Further, there was an 18 % increase in P uptake by trees in the ash treatment. By contrast, repeated N fertilization, with or without ash, reduced Olsen-P. The lower P extractability was concomitant with a 39 % increase in plant P uptake in the N treatment, which indicates elevated P uptake in response to higher N availability. Hence, the application of wood ash increased Al-bound P, easily available P, and P uptake. N fertilization, while also increasing tree P uptake, instead decreased easily available P and did not cause a shift in soil P speciation

    Long-term effects on soil-water chemistry of wood-ash and nitrogen application in a conifer forest

    No full text
    Wood-ash application to forest land has been proposed as a means to compensate for increased nutrient removal at high harvest intensity. A study-plot experiment was established on a mineral soil site in Sweden to study how this measure affects soil-water chemistry. In 1995, ten treatments were applied. Here we present results from years nine to seventeen after application for eight of the treatments: control, 310The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Effects of Whole-Tree Harvest on Soil-Water Chemistry – Analysis of Data from five Conifer Sites in Sweden

    No full text
    Logging residues, such as tops, branches and needles, can provide a useful biofuel for large-scale energy production. However, increasing the harvest intensity may affect the soil nutrient stores and water quality. Here, effects on soil-water chemistry were investigated after clear-cutting using data from five experimental sites in Sweden, representing medium- to high-fertility sites. They were located in recharge areas on mineral soil and harvested between the years 1995 and 2001. Soil-water samples had previously been collected from below the main part of the root zone in study plots subjected to stem-only or whole-tree harvest. Soil-water chemistry data from the five sites were jointly analyzed by ANOVA using seasonal mean concentrations from the first six seasons after harvest. The concentrations of NO3The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Long-term effects on soil-water nitrogen and pH of clearcutting and simulated disc trenching of previously N-fertilised pine plots

    No full text
    Our abstract contains more than 200 words to meet the suggestions given by the reviewers.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Nitrogen deposition effects on ecosystem services and interactions with other pollutants and climate change

    No full text
    Ecosystem services are defined as the ecological and socio-economic value of goods and services provided by natural and semi-natural ecosystems. Ecosystem services are being impacted by many human induced stresses, one of them being nitrogen (N) deposition and its interactions with other pollutants and climate change. It is concluded that N directly or indirectly affects a wide range of provisioning, regulating, supporting and cultural ecosystem services, many of which are interrelated. When considering the effects of N on ecosystem services, it is important to distinguish between different types of ecosystems/species and the protection against N impacts should include other aspects related to N, in addition to biodiversity. The Working Group considered the following priorities of ecosystem services in relation to N: biodiversity; air quality/atmosphere; ecosystem changes; NO3 leaching; climate regulation and cultural issues. These are the services for which the best evidence is available in the literature. There is a conflicting interest between greenhouse gas ecosystem services and biodiversity protection; up to some point of increasing N inputs, net greenhouse gas uptake is improved, while biodiversity is already adversely affected
    corecore