299 research outputs found

    Age Constraints on Brane Models of Dark Energy

    Get PDF
    Inspired by recent developments in particle physics, the so-called brane world cosmology seems to provide an alternative explanation for the present dark energy problem. In this paper, we use the estimated age of high-zz objects to constrain the value of the cosmological parameters in some particular scenarios based on this large scale modification of gravity. We show that such models are compatible with these observations for values of the crossover distance between the 4 and 5 dimensions of the order of rc≀1.67Ho−1r_c \leq 1.67H_o^{-1}.Comment: 4 pages, 2 figures, 1 table, to appear in Phys. Rev.

    The Deformable Universe

    Full text link
    The concept of smooth deformations of a Riemannian manifolds, recently evidenced by the solution of the Poincar\'e conjecture, is applied to Einstein's gravitational theory and in particular to the standard FLRW cosmology. We present a brief review of the deformation of Riemannian geometry, showing how such deformations can be derived from the Einstein-Hilbert dynamical principle. We show that such deformations of space-times of general relativity produce observable effects that can be measured by four-dimensional observers. In the case of the FLRW cosmology, one such observable effect is shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure

    Brane World Cosmologies and Statistical Properties of Gravitational Lenses

    Full text link
    Brane world cosmologies seem to provide an alternative explanation for the present accelerated stage of the Universe with no need to invoke either a cosmological constant or an exotic \emph{quintessence} component. In this paper we investigate statistical properties of gravitational lenses for some particular scenarios based on this large scale modification of gravity. We show that a large class of such models are compatible with the current lensing data for values of the matter density parameter Ωm≀0.94\Omega_{\rm{m}} \leq 0.94 (1σ1\sigma). If one fixes Ωm\Omega_{\rm{m}} to be ≃0.3\simeq 0.3, as suggested by most of the dynamical estimates of the quantity of matter in the Universe, the predicted number of lensed quasars requires a slightly open universe with a crossover distance between the 4 and 5-dimensional gravities of the order of 1.76Ho−11.76 H_o^{-1}.Comment: 6 pages, 3 figures, revte

    Situationally edited empathy: an effect of socio-economic structure on individual choice

    Get PDF
    Criminological theory still operates with deficient models of the offender as agent, and of social influences on the agent’s decision-making process. This paper takes one ‘emotion’, empathy, which is theoretically of considerable importance in influencing the choices made by agents; particularly those involving criminal or otherwise harmful action. Using a framework not of rational action, but of ‘rationalised action’, the paper considers some of the effects on individual psychology of social, economic, political and cultural structure. It is suggested that the climate-setting effects of these structures promote normative definitions of social situations which allow unempathic, harmful action to be rationalised through the situational editing of empathy. The ‘crime is normal’ argument can therefore be extended to include the recognition that the uncompassionate state of mind of the criminal actor is a reflection of the self-interested values which govern non-criminal action in wider society

    Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, Antarctica

    Get PDF
    Subglacial meltwater drainage can enhance localized melting along grounding zones and beneath the ice shelves of marine-terminating glaciers. Efforts to constrain the evolution of subglacial hydrology and the resulting influence on ice stability in space and on decadal to millennial timescales are lacking. Here, we apply sedimentological, geochemical, and statistical methods to analyze sediment cores recovered offshore Thwaites Glacier, West Antarctica to reconstruct meltwater drainage activity through the pre-satellite era. We find evidence for a long-lived subglacial hydrologic system beneath Thwaites Glacier and indications that meltwater plumes are the primary mechanism of sedimentation seaward of the glacier today. Detailed core stratigraphy revealed through computed tomography scanning captures variability in drainage styles and suggests greater magnitudes of sediment-laden meltwater have been delivered to the ocean in recent centuries compared to the past several thousand years. Fundamental similarities between meltwater plume deposits offshore Thwaites Glacier and those described in association with other Antarctic glacial systems imply widespread and similar subglacial hydrologic processes that occur independently of subglacial geology. In the context of Holocene changes to the Thwaites Glacier margin, it is likely that subglacial drainage enhanced submarine melt along the grounding zone and amplified ice-shelf melt driven by oceanic processes, consistent with observations of other West Antarctic glaciers today. This study highlights the necessity of accounting for the influence of subglacial hydrology on grounding-zone and ice-shelf melt in projections of future behavior of the Thwaites Glacier ice margin and marine-based glaciers around the Antarctic continent

    Some Observational Consequences of Brane World Cosmologies

    Get PDF
    The presence of dark energy in the Universe is inferred directly and indirectly from a large body of observational evidence. The simplest and most theoretically appealing possibility is the vacuum energy density (cosmological constant). However, although in agreement with current observations, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we focus our attention on another dark energy candidate, one arising from gravitational \emph{leakage} into extra dimensions. We investigate observational constraints from current measurements of angular size of high-zz compact radio-sources on accelerated models based on this large scale modification of gravity. The predicted age of the Universe in the context of these models is briefly discussed. We argue that future observations will enable a more accurate test of these cosmologies and, possibly, show that such models constitute a viable possibility for the dark energy problem.Comment: 6 pages, 4 figures, to appear in Phys. Rev. D (minor revisions

    Sensitivity of LHC experiments to exotic highly ionising particles

    Full text link
    The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they behave as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through either passive or active detectors and, in the case of magnetically charged objects, the so-called induction method with which magnetic monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.Comment: 20 pages, 52 figure
    • 

    corecore