6 research outputs found

    Chemical Diversity of Apatites

    Get PDF
    Apatites can accommodate a large number of vacancies and afford multiple ionic substitutions determining their reactivity and biological properties. Unlike other biominerals they offer a unique adaptability to various biological functions. The diversity of apatites is essentially related to their structure and to their mode of formation. Special charge compensation mechanisms allow molecular insertions and ion substitutions and determine to some extent their solubility behaviour. Apatite formation at physiological pH involves a structured surface hydrated layer nourishing the development of apatite domains. This surface layer contains relatively mobile and exchangeable ions, and is mainly responsible for the surface properties of apatite crystals from a chemical (dissolution properties, ion exchange ability, ion insertions, molecule adsorption and insertions) and a physical (surface charge, interfacial energy) point of view. These characteristics are used by living organisms and can also be exploited in material science

    Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials

    Get PDF
    Nanocrystalline apatites play an important role in biomineralisation and they are used as bioactive biominerals for orthopaedic applications. One of the most interesting characteristics of the nanocrystals, evidenced by spectroscopic methods, is the existence of a structured surface hydrated layer, well developed in freshly formed precipitates, which becomes progressively transformed into the more stable apatitic lattice upon ageing in aqueous media. The hydrated layer is very fragile and irreversibly altered upon drying. Several routes leading to different apatite compositions are found in biological systems. The loosely bound ions of the hydrated layer can be easily and reversibly substituted by other ions in fast aqueous ion exchange reactions. These ions can either be included in the growing stable apatite lattice during the ageing process or remain in the hydrated layer. The adsorption properties of nanocrystals appear to be strongly dependent on the composition of the hydrated layer and on ageing. The surface reactivity of the apatite nanocrystals can play a part in different biomaterials and could explain the setting reactions of biomimetic calcium phosphate cements and the possibility of obtaining adherent nanocrystalline coatings on different substrates

    CHARACTERIZATION OF OXYHYDROXYAPATITES BY <SUP>31</SUP>P SOLID-STATE NUCLEAR MAGNETIC RESONANCE

    No full text

    Nanocrystalline apatites in biological systems: characterisation, structure and properties.

    No full text
    Nanocrystalline apatitic calcium phosphates play a crucial role in calcified tissues and biomaterials. One of the most interesting characteristics of biomimetic apatite nanocrystals is the existence of a surface hydrated layer essentially related to their formation process in solution. This hydrated layer shows specific spectroscopic characteristics. It seems to exist in its nascent state only in wet samples and is altered on drying. This surface-hydrated layer progressively disappears as the stable apatite domains develop. The surface ions can be rapidly and reversibly exchanged in solution, mainly with selected bivalent species. The exchange reactions clearly reveal the existence of two domains: the relatively inert apatite core and the very reactive surface-hydrated domains. The structure of the hydrated layer has been shown to be reversibly affected by the constituting ions. Such a surface layer in bone apatite nanocrystals could participate actively in homeostasis and probably other regulation processes. The specificity of biomimetic apatite nanocrystals also opens interesting possibilities in materials science. The mobility of the mineral ions on the crystal surface, for example, allows strong bonding and interactions either with other crystals or with different substrates. Inter-crystalline interactions have been described as a “crystal fusion” process in vivo and they could be involved in the setting reaction of biomimetic calcium phosphate cements. Ceramic-like materials using the surface interaction capabilities of the nanocrystals can be produced at very low temperature (below 200 C). The surface-hydrated layer could also be involved in interactions with macromolecules and polymeric materials or in the coating of implants. The ion exchange and adsorption capabilities of the nanocrystals could probably be used for drug release, offering a range of possible behaviours

    Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites

    Get PDF
    International audienceThe aim of the current work was to study the physico-chemical interactions of a bisphosphonate molecule, risedronate, with a well-characterised synthetic nanocrystalline apatite (NCA) as a model bone mineral. We adopted a global approach, using complementary physico-chemical techniques such as FTIR,RAMAN and NMR spectroscopies in order to learn more about the interaction process of risedronate with the apatitic surface. The results obtained suggest that risedronate adsorption corresponds to an ion substitution reaction with phosphate ions occurring at the crystal surface. This mechanism explains the greater amount adsorbed (N) for NCA, compared to well crystallised stoichiometric hydroxyapatite, attributable to the well-developed hydrated layer at the surface of the nanocrystals. However, most calcium ions remain attached to the solid phase and the formation of insoluble risedronate calcium salts must also be considered as a competitive reaction to the adsorption. Thus a calcium risedronate salt was synthesised and fully characterised for comparison to the solids after adsorption. Following spectroscopic results, it can be concluded that a strong interaction was established between risedronate ions and calcium ions at the apatitic surface. However, under these experimental conditions there is no nucleation of a distinct calcium risedronate salt and the apatite crystals retain their integrity

    Adsorption onto nanocrystalline apatitic calcium phosphates. Applications to growth factors and drugs delivery

    No full text
    Interfacial properties of apatitic calcium phosphate play a crucial role in calcified tissues and biomaterials. Generally the adsorption of molecules on apatitic calcium phosphates is considered to obey to electrostatic interactions. The study of the adsorption of various active molecules such as albumin, heparin, bisphosphonate, and growth factors like BMP-2, VEGF and FGF-2 on such surfaces seems to follow a similar pathway. In all cases the adsorption process can be well described using Langmuir isotherms, although the adsorption process appears generally as irreversible. Further studies of the adsorption reaction reveal, in most cases, an ion exchange mechanism involving the replacement of mineral ions of the apatite surface by molecular ions from the solution. Considering biomimetic apatite nanocrystals, considerable variations of the adsorption parameters are observed depending on the maturation time of the nanocrystals. As the maturation time increases, the adsorption affinity constant increases and the maximum amount adsorbed decreases. The understanding of the adsorption process provides fundamental tools for the development of drug delivery system using apatite materials. Applications to the release of active molecules are examined in the case of apatite coatings
    corecore