22 research outputs found
Genomic prediction of preliminary yield trials in chickpea: Effect of functional annotation of SNPs and environment
Abstract Achieving yield potential in chickpea (Cicer arietinum L.) is limited by many constraints that include biotic and abiotic stresses. Combining next-generation sequencing technology with advanced statistical modeling has the potential to increase genetic gain efficiently. Whole genome resequencing data was obtained from 315 advanced chickpea breeding lines from the Australian chickpea breeding program resulting in more than 298,000 single nucleotide polymorphisms (SNPs) discovered. Analysis of population structure revealed a distinct group of breeding lines with many alleles that are absent from recently released Australian cultivars. Genome-wide association studies (GWAS) using these Australian breeding lines identified 20 SNPs significantly associated with grain yield in multiple field environments. A reduced level of nucleotide diversity and extended linkage disequilibrium suggested that some regions in these chickpea genomes may have been through selective breeding for yield or other traits. A large introgression segment that introduced from C. echinospermum for phytophthora root rot resistance was identified on chromosome 6, yet it also has unintended consequences of reducing yield due to linkage drag. We further investigated the effect of genotype by environment interaction on genomic prediction of yield. We found that the training set had better prediction accuracy when phenotyped under conditions relevant to the targeted environments. We also investigated the effect of SNP functional annotation on prediction accuracy using different subsets of SNPs based on their genomic locations: regulatory regions, exome, and alternative splice sites. Compared with the whole SNP dataset, a subset of SNPs did not significantly decrease prediction accuracy for grain yield despite consisting of a smaller number of SNPs
Genetic diversity of microsatellite alleles located at quantitative resistance loci for Ascochyta blight resistance in a global collection of chickpea germplasm
A global collection of 43 chickpea (Cicer arietinum L.) genotypes, resistant and susceptible to Ascochyta blight caused by Ascochyta rabiei was evaluated for the disease under controlled conditions. In this study three known pathotypes (P-I, P-II, and P-III) were used to evaluate the reactions of this collection. the chickpea genotypes were also characterized using 14 microsatellite markers flanking the genomic regions associated with Ascochyta blight resistance quantitative trait loci (QTLs). Phenotyping results indicated that 27 genotypes were re- sistant to P-I, 14 to P-II, and five to P-III, revealing the possible erosion of resistance through the evolution of virulent pathogen pathotypes. the genetic diversity analysis revealed 67 alleles at 14 microsatellite loci with an average of 4.8 alleles per locus among the genotypes tested. Genetic similarity estimates differentiated four subclusters (A, B, C, and D) of the genotypes. However, none of sub-clusters were separated into resistant genotypes for a specific pathotype. The genetic diversity ranged from 0.48 to 0.80 which indicated that there is considerable variation in QTL regions associated with Ascochyta blight resistance among the collections of chickpea genotypes studied, as assessed using the hyper-variable microsatellite markers
Aggressiveness of Phytophthora medicaginis on chickpea: Phenotyping method determines isolate ranking and host genotype-by-isolate interactions
Phytophthora medicaginis causing Phytophthora root rot of chickpea (Cicer arietinum) is an important disease, with genetic resistance using C. arietinum × Cicer echinospermum crosses as the main disease management strategy. We evaluated pathogenic variation in P. medicaginis populations with the aim of improving phenotyping methods for disease resistance. We addressed the question of individual isolate aggressiveness across four different seedling-based phenotyping methods conducted in glasshouses and one field-based phenotyping method. Our results revealed that a seedling media surface inoculation method used on a susceptible C. arietinum variety and a moderately resistant C. arietinum × C. echinospermum backcross detected the greatest variability in aggressiveness among 37 P. medicaginis isolates. Evaluations of different components of resistance, using our different phenotyping methods, revealed that differential pathogen–isolate reactions occur with some phenotyping methods. We found support for our hypotheses that the level of aggressiveness of P. medicaginis isolates depends on the phenotyping method, and that phenotyping methods interact with both isolate and host genotype reactions. Our cup-based root inoculation method showed promise as a non-field-based phenotyping method, as it provided significant correlations with genotype–isolate rankings in the field experiment for a number of disease parameters
Evidence and Consequence of a Highly Adapted Clonal Haplotype within the Australian Ascochyta rabiei Population
The Australian Ascochyta rabiei (Pass.) Labr. (syn. Phoma rabiei) population has low genotypic diversity with only one mating type detected to date, potentially precluding substantial evolution through recombination. However, a large diversity in aggressiveness exists. In an effort to better understand the risk from selective adaptation to currently used resistance sources and chemical control strategies, the population was examined in detail. For this, a total of 598 isolates were quasi-hierarchically sampled between 2013 and 2015 across all major Australian chickpea growing regions and commonly grown host genotypes. Although a large number of haplotypes were identified (66) through short sequence repeat (SSR) genotyping, overall low gene diversity (Hexp = 0.066) and genotypic diversity (D = 0.57) was detected. Almost 70% of the isolates assessed were of a single dominant haplotype (ARH01). Disease screening on a differential host set, including three commonly deployed resistance sources, revealed distinct aggressiveness among the isolates, with 17% of all isolates identified as highly aggressive. Almost 75% of these were of the ARH01 haplotype. A similar pattern was observed at the host level, with 46% of all isolates collected from the commonly grown host genotype Genesis090 (classified as “resistant” during the term of collection) identified as highly aggressive. Of these, 63% belonged to the ARH01 haplotype. In conclusion, the ARH01 haplotype represents a significant risk to the Australian chickpea industry, being not only widely adapted to the diverse agro-geographical environments of the Australian chickpea growing regions, but also containing a disproportionately large number of aggressive isolates, indicating fitness to survive and replicate on the best resistance sources in the Australian germplasm.The research was funded by the Grains Research and
Development Cooperation within project UM00052
Crop Updates 2010 - Crop Specific
This session covers twenty four papers from different authors:
PLENARY
1. Challenges facing western Canadian cropping over the next 10 years, Hugh J Beckie, Research Centre, Agriculture and Agri-Food Canada, Saskatoon,
Saskatchewan
CROP SPECIFIC
Breeding
2. The challenge of breeding canola hybrids – new opportunities for WA growers, Wallace Cowling, Research Director, Canola Breeders Western Australia Pty Ltd
3. Chickpea 2009 crop variety testing of germplasm developed by DAFWA/CLIMA/ICRISAT/COGGO alliance. Khan, TN1,3, Adhikari, K1,3, Siddique, K2, Garlinge, J1, Smith, L1, Morgan, S1 and Boyd, C1 1Department of Agriculture and Food, Western Australia (DAFWA), 2Insititute of Agriculture, The University of Western Australia (UWA), 3Centre for Legumes in Mediterranean Agriculture (CLIMA), The University of Western Australia
4. PBA Pulse Breeding Australia – 2009 Field Pea Results, Ian Pritchard1, Chris Veitch1, Colin Boyd1, Stuart Morgan1, Alan Harris1 and
Tony Leonforte2, 1Department of Agriculture and Food, Western Australia, 2Department of Primary Industries, Victoria
5. PBA Pulse Breeding Australia – 2009 Chickpea Results, Ian Pritchard1, Chris Veitch1, Colin Boyd1, Murray Blyth1, Shari Dougal1 and
Kristy Hobson2 1Department of Agriculture and Food, Western Australia, 2Department of Primary Industries, Victoria
Decision Support
6. A tool for identifying problems in wheat paddocks, Ben Curtis and Doug Sawkins, Department of Agriculture and Food
7. DAFWA Seasonal Forecast for 2010, Stephens, D, Department of Agriculture and Food, Western Australian, Climate and Modelling Group
Disease
8. Enhancement of black spot resistance in field pea, Kedar Adhikari, T Khan, S Morgan and C Boyd, Department of Agriculture and Food,
9. fungicide management of yellow spot in wheat, Ciara Beard, Kith Jayasena, Kazue Tanaka and Anne Smith, Department of Agriculture and Food
10. Resistance to infection by Beet western yellows virus in four Australian canola varieties, Brenda Coutts and Roger Jones, Department of Agriculture and Food
11. Yellow spot carryover risk from stubble in wheat-on-wheat rotations, Jean Galloway, Pip Payne and Tess Humphreys, Department of Agriculture and
Food
12. Fungicides for the future: Management of Barley Powdery Mildew and Leaf Rust, Kith Jayasena, Kazue Tanaka and William MacLeod, Department of Agriculture and Food
13. 2009 canola disease survey and management options for blackleg and Sclerotinia in 2010, Ravjit Khangura, WJ MacLeod, M Aberra and H Mian, Department of Agriculture and Food
14. Impact of variety and fungicide on carryover of stubble borne inoculum and yellow spot severity in continuous wheat cropping, Geoff Thomas, Pip Payne, Tess Humphreys and Anne Smith, Department of Agriculture and Food
15. Limitations to the spread of Wheat streak mosaic virus by the Wheat curl mite in WA during 2009, Dusty Severtson, Peter Mangano, Brenda Coutts, Monica Kehoe and Roger Jones, Department of Agriculture and Food
16. Viable solutions for barley powdery mildew, Madeline A. Tucker, Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University
Marketing
17. The importance of varietal accreditation in a post-deregulation barley marketing environment, Neil Barker, Barley Australia
18. Can Australia wheat meet requirements for a new middle east market? Robert Loughman, Larisa Cato, Department of Agriculture and Food, and Ken Quail, BRI Australia
VARIETY PERFORMANCE
19. Sowing rate and time for hybrid vs open-pollinated canola, Mohammad Amjad and Mark Seymour, Department of Agriculture and Food
20. HYOLA® National Hybrid vs OP Canola Hybrid F1 vs Retained Seed Generation Trial Results and recommendations for growers, Justin Kudnig, Mark Thompson, Anton Mannes, Michael Uttley, Chris Fletcher, Andrew Etherton, Nick Joyce and Kate Light, Pacific Seeds Australia
21. HYOLA® National Hybrid vs OP Canola Sowing Rate Trial Results and plant population recommendations for Australian growers, Justin Kudnig, Mark Thompson, Anton Mannes, Michael Uttley, Andrew Etherton, Chris Fletcher, Nick Joyce and Kate Light, Pacific Seeds Australia; Peter Hamblin, Agritech Research Young, NSW, Michael Lamond, Agrisearch, York, Western Australia
22. Desi chickpea agronomy for 2010, Alan Meldrum, Pulse Australia and Wayne Parker, Department of Agriculture and Food
23. New wheat varieties – exploit the benefits and avoid the pitfalls, Steve Penny, Sarah Ellis, Brenda Shackley, Christine Zaicou, Shahajahan Miyan, Darshan Sharma and Ben Curtis, Department of Agriculture and Food
24. The influence of genetics and environment on the level of seed alkaloid in narrow-leafed lupins, Greg Shea1, Bevan Buirchell1, David Harris2 and Bob French1, 1Department of Agriculture and Food, 2ChemCentr
Crop Updates 2006 - Lupins and Pulses
This session covers sixty six papers from different authors:
2005 LUPIN AND PULSE INDUSTRY HIGHLIGHTS
1. Lupin Peter White, Department of Agriculture
2. Pulses Mark Seymour, Department of Agriculture
3. Monthly rainfall at experimental sites in 2005
4. Acknowledgements Amelia McLarty EDITOR
5. Contributors
6. Background Peter White, Department of Agriculture
2005 REGIONAL ROUNDUP
7. Northern agricultural region Wayne Parker, Department of Agriculture
8. Central agricultural region Ian Pritchard and Bob French, Department of Agriculture
9. Great southern and lakes Rodger Beermier, Department of Agriculture
10. South east region Mark Seymour, Department of Agriculture
LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT
11. Lupin Peter White, Department of Agriculture
12. Narrow-leafed lupin breeding Bevan Buirchell, Department of Agriculture
13. Progress in the development of pearl lupin (Lupinus mutabilis) for Australian agriculture, Mark Sweetingham1,2, Jon Clements1, Geoff Thomas2, Roger Jones1, Sofia Sipsas1, John Quealy2, Leigh Smith1 and Gordon Francis1 1CLIMA, The University of Western Australia 2Department of Agriculture
14. Molecular genetic markers and lupin breeding, Huaan Yang, Jeffrey Boersma, Bevan Buirchell, Department of Agriculture
15. Construction of a genetic linkage map using MFLP, and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus augustiflolius L) Jeffrey Boersma1,2, Margaret Pallotta3, Bevan Buirchell1, Chengdao Li1, Krishnapillai Sivasithamparam2 and Huaan Yang1 1Department of Agriculture, 2The University of Western Australia, 3Australian Centre for Plant Functional Genomics, South Australia
16. The first gene-based map of narrow-leafed lupin – location of domestication genes and conserved synteny with Medicago truncatula, M. Nelson1, H. Phan2, S. Ellwood2, P. Moolhuijzen3, M. Bellgard3, J. Hane2, A. Williams2, J. Fos‑Nyarko4, B. Wolko5, M. Książkiewicz5, M. Cakir4, M. Jones4, M. Scobie4, C. O’Lone1, S.J. Barker1, R. Oliver2, and W. Cowling1 1School of Plant Biology, The University of Western Australia, 2Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, 3Centre for Bioinformatics and Biological Computing, Murdoch University, 4School of Biological Sciences and Biotechnology, SABC, Murdoch University,5Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
17. How does lupin optimum density change row spacing? Bob French and Laurie Maiolo, Department of Agriculture
18. Wide row spacing and seeding rate of lupins with conventional and precision seeding machines Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture
19. Influence of row spacing and plant density on lupin competition with annual ryegrass, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture
20. Effect of timing and speed of inter-row cultivation on lupins, Martin Harries, Jo Walker and Steve Cosh, Department of Agriculture
21. The interaction of atrazine herbicide rate and row spacing on lupin seedling survival, Martin Harries and Jo Walker Department of Agriculture
22. The banding of herbicides on lupin row crops, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture
23. Large plot testing of herbicide tolerance of new lupin lines, Wayne Parker, Department of Agriculture
24. Effect of seed source and simazine rate of seedling emergence and growth, Peter White and Greg Shea, Department of Agriculture
25. The effect of lupin row spacing and seeding rate on a following wheat crop, Martin Harries, Jo Walker and Dirranie Kirby, Department of Agriculture
26. Response of crop lupin species to row spacing, Leigh Smith1, Kedar Adhikari1, Jon Clements2 and Patrizia Guantini3, 1Department of Agriculture, 2CLIMA, The University of Western Australia, 3University of Florence, Italy
27. Response of Lupinus mutabilis to lime application and over watering, Peter White, Leigh Smith and Mark Sweetingham, Department of Agriculture
28. Impact of anthracnose on yield of Andromeda lupins, Geoff Thomas, Kedar Adhikari and Katie Bell, Department of Agriculture
29. Survey of lupin root health (in major production areas), Geoff Thomas, Ken Adcock, Katie Bell, Ciara Beard and Anne Smith, Department of Agriculture
30. Development of a generic forecasting and decision support system for diseases in the Western Australian wheatbelt, Tim Maling1, Art Diggle1,2, Debbie Thackray1, Kadambot Siddique1 and Roger Jones1,2 1CLIMA, The University of Western Australia, 2Department of Agriculture
31.Tanjil mutants highly tolerant to metribuzin, Ping Si1, Mark Sweetingham1,2, Bevan Buirchell1,2 and Huaan Yang l,2 1CLIMA, The University of Western Australia, 2Department of Agriculture
32. Precipitation pH vs. yield and functional properties of lupin protein isolate, Vijay Jayasena1, Hui Jun Chih1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre
33. Lupin protein isolation with the use of salts, Vijay Jayasena1, Florence Kartawinata1,Ranil Coorey1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre
34. Field pea, Mark Seymour, Department of Agriculture
35. Breeding highlights Kerry Regan1,2, Tanveer Khan1,2, Stuart Morgan1 and Phillip Chambers1 1Department of Agriculture, 2CLIMA, The University of Western Australia
36. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge1 and Rod Hunter1 1Department of Agriculture, 2CLIMA, The University of Western Australia
37. Days to flowering of field pea varieties throughout WA Mark Seymour1, Ian Pritchard1, Rodger Beermier1, Pam Burgess1 and Dr Eric Armstrong2 Department of Agriculture, 2NSW Department of Primary Industries, Wagga Wagga
38. Semi-leafless field peas yield more, with less ryegrass seed set, in narrow rows, Glen Riethmuller, Department of Agriculture
39. Swathing, stripping and other innovative ways to harvest field peas, Mark Seymour, Ian Pritchard, Rodger Beermier and Pam Burgess, Department of Agriculture
40. Pulse demonstrations, Ian Pritchard, Wayne Parker, Greg Shea, Department of Agriculture
41. Field pea extension – focus on field peas 2005, Ian Pritchard, Department of Agriculture
42. Field pea blackspot disease in 2005: Prediction versus reality, Moin Salam, Jean Galloway, Pip Payne, Bill MacLeod and Art Diggle, Department of Agriculture
43. Pea seed-borne mosaic virus in pulses: Screening for seed quality defects and virus resistance, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia
44. Yield losses from sowing field peas infected with pea seed-borne mosaic virus, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia
45. Desi chickpea, Wayne Parker, Department of Agriculture
46. Breeding highlights, Tanveer Khan 1,2, Pooran Gaur3, Kadambot Siddique2, Heather Clarke2, Stuart Morgan1and Alan Harris1, 1Department of Agriculture2CLIMA, The University of Western Australia, 3International Crop Research Institute for Semi Arid Tropics (ICRISAT), India
47. National chickpea improvement program, Kerry Regan1, Ted Knights2 and Kristy Hobson3,1Department of Agriculture, 2Agriculture New South Wales 3Department of Primary Industries, Victoria
48. Chickpea breeding lines in CVT exhibit excellent ascochyta blight resistance, Tanveer Khan1,2, Alan Harris1, Stuart Morgan1 and Kerry Regan1,2, 1Department of Agriculture, 2CLIMA, The University of Western Australia
49. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge2 and Rod Hunter2, 1CLIMA, The University of Western Australia 2Department of Agriculture
50. Desi chickpeas for the wheatbelt, Wayne Parker and Ian Pritchard, Department of Agriculture
51. Large scale demonstration of new chickpea varieties, Wayne Parker, MurrayBlyth, Steve Cosh, Dirranie Kirby and Chris Matthews, Department of Agriculture
52. Ascochyta management with new chickpeas, Martin Harries, Bill MacLeod, Murray Blyth and Jo Walker, Department of Agriculture
53. Management of ascochyta blight in improved chickpea varieties, Bill MacLeod1, Colin Hanbury2, Pip Payne1, Martin Harries1, Murray Blyth1, Tanveer Khan1,2, Kadambot Siddique2, 1Department of Agriculture, 2CLIMA, The University of Western Australia
54. Botrytis grey mould of chickpea, Bill MacLeod, Department of Agriculture
55. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia
56. New ascochyta blight resistant, high quality kabuli chickpea varieties, Kerry Regan1,2, Kadambot Siddique2, Tim Pope2 and Mike Baker1, 1Department of Agriculture, 2CLIMA, The University of Western Australia
57. Crop production and disease management of Almaz and Nafice, Kerry Regan and Bill MacLeod, Department of Agriculture, and CLIMA, The University of Western Australia
58. Faba bean,Mark Seymour, Department of Agriculture
59. Germplasm evaluation – faba bean, Mark Seymour1, Tim Pope2, Peter White1, Martin Harries1, Murray Blyth1, Rodger Beermier1, Pam Burgess1 and Leanne Young1,1Department of Agriculture, 2CLIMA, The University of Western Australia
60. Factors affecting seed coat colour of faba bean during storage, Syed Muhammad Nasar-Abbas1, Julie Plummer1, Kadambot Siddique2, Peter White 3, D. Harris4 and Ken Dods4.1The University of Western Australia, 2CLIMA, The University of Western Australia, 3Department of Agriculture, 4Chemistry Centre
61. Lentil,Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia
62. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Phill Chambers1, Alan Harris1, Wayne Parker1 and Michael Materne3, 1Department of Agriculture 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria
Pulse species
63. Land suitability for production of different crop species in Western Australia, Peter White, Dennis van Gool, and Mike Baker, Department of Agriculture
64. Genomic synteny in legumes: Application to crop breeding, Huyen Phan1, Simon Ellwood1, J. Hane1, Angela Williams1, R. Ford2, S. Thomas3 and Richard Oliver1,1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University 2BioMarka, School of Agriculture and Food Systems, ILFR, University of Melbourne 3NSW Department of Primary Industries
65. ALOSCA – Development of a dry flow legume seed inoculant, Rory Coffey and Chris Poole, ALOSCA Technologies Pty Ltd
66. Genetic dissection of resistance to fungal necrotrophs in Medicago truncatula, Simon Ellwood1, Theo Pfaff1, Judith Lichtenzveig12, Lars Kamphuis1, Nola D\u27Souza1, Angela Williams1, Emma Groves1, Karam Singh2 and Richard Oliver1
1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2CSIRO Plant Industry
APPENDIX I: LIST OF COMMON ACRONYM
Cause of Death: Phytophthora or Flood? Effects of Waterlogging on <i>Phytophthora medicaginis</i> and Resistance of Chickpea (<i>Cicer arietinum</i>)
Chickpea production in Australia is constrained by both waterlogging and the root disease Phytophthora root rot (PRR). Soil saturation is an important pre-condition for significant disease development for many soil-borne Phytophthora spp. In wet years, water can pool in low lying areas within a field, resulting in waterlogging, which, in the presence of PRR, can result in a significant yield loss for Australian chickpea varieties. In these circumstances, the specific cause of death is often difficult to discern, as the damage is rapid and the spread of PRR can be explosive in nature. The present study describes the impact of soil waterlogging on oxygen availability and the ability of P. medicaginis to infect chickpea plants. Late waterlogging in combination with PRR reduced the total plant biomass by an average of 94%; however, waterlogging alone accounted for 88% of this loss across three reference genotypes. Additional experiments found that under hypoxic conditions associated with waterlogging, P. medicaganis did not proliferate as determined by zoospore counts and DNA detection using qPCR. Consequently, minimizing waterlogging damage through breeding and agronomic practices should be a key priority for integrated disease management, as waterlogging alone results in plant stunting, yield loss and a reduced resistance to PRR
Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea Ă— <i>Cicer echinospermum</i> Backcross Derivatives
Phytophthora root rot (PRR) of chickpea (Cicer arietinum) caused by Phytophthora medicaginis is an important disease. Partial resistance to PRR is sourced from Cicer echinospermum. In this study, we evaluated if lines with low levels of PRR foliage symptoms in two contrasting recombinant inbred line (RIL) populations parented by chickpea cultivars (Yorker and Rupali) and 04067-81-2-1-1 (C. echinospermum, interspecific breeding line) had a significant drag on yield parameters. For the Yorker Ă— 04067-81-2-1-1 population with the highest level of PRR resistance, in the absence of PRR, low foliage symptom RIL had significantly later flowering and podding, lower grain yields, and lighter seed and shorter plant phenotypes than high foliage symptom RIL. A quantitative trait locus analysis identified significant QTL for flowering, height, 100-seed weight, and yield, and there was a significantly higher frequency of alleles for the negative agronomic traits (i.e., drag) from the 04067-81-2-1-1 parent in low foliage symptom RIL than in high foliage symptom RIL. For the Rupali Ă— 04067-81-2-1-1 population with lower levels of PRR resistance, in the absence of PRR, low foliage symptom RIL had significantly lighter seed and shorter plants than high foliage symptom RIL. Significant QTL were detected, the majority were for the timing of flowering and podding (n = 18), others were for plant height, yield, and 100-seed weight. For this second population, the frequency of alleles for the negative agronomic traits from the 04067-81-2-1-1 parent did not differ between low and high foliage symptom RIL. The 100 seed weight of RIL under moderate PRR disease pressure showed some promise as a yield component trait to identify phenotypes with both high levels of PRR resistance and grain yield potential for further seed number evaluations. We identified that large population sizes are required to enable selection among chickpea Ă— C. echinospermum crosses for high levels of PRR resistance without a significant drag on yield