3,585 research outputs found

    Lead-free Perovskite Materials for Solar Cell: An Update of Recent Trends

    Get PDF
    Solar energy has emerged as renewable energy to support human and social development. The development of low-cost, high-efficiency perovskite solar cell has attracted intensive attention because of unique properties such as band gap tenability, stability and high absorption co-efficient value. Research indicates that the power conversion efficiency of lead perovskite solar cell has increased from 3.8% to 25.2% recently. However, the main challenges in this type of solar cell was lead element. Lead is very toxic and very hard to discharge from the body. Therefore, researchers work hard to develop non or low toxic metal ions to substitute lead in solar cell. In this work, different lead-free perovskite materials (tin, germanium, caesium, copper, bismuth and antimony) and related photovoltaic behaviors were reported. The band gap, absorption efficiency, power conversion efficiency, fill factor, short circuit current, open circuit voltage and other physical properties for all of lead-free materials were highlighted. Tin based perovskites showed very high absorption coefficient. Bismuth and antimony were very stable because of +3 valence state in the atmosphere. Finally, the review also describes some challenges facing the performance of solar cells

    The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy.

    Get PDF
    BackgroundTumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma.Methodology/principal findingsHere, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D) spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226) and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro.Conclusion/significanceThis work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. We believe that the methods developed here may apply to the studies of other tumor-targeting antibodies and immunoconjugates in vitro

    Interatomic van der Waals potential in the presence of a magneto-electric sphere

    Full text link
    On the basis of a general formula obtained earlier via fourth-order erturbation theory within the framework of macroscopic quantum electrodynamics, the van der Waals potential between two neutral, unpolarized, ground-state atoms in the presence of a homogeneous, dispersing and absorbing magnetoelectric sphere is studied. When the radius of the sphere becomes sufficiently large, the result asymptotically agrees with that for two atoms near a planar interface. In the opposite limit of a very small sphere, the sphere can effectively be regarded as being a third ground-state atom, and the nonadditive three-atom van der Waals potential is recovered. To illustrate the effect of a sphere of arbitrary radius, numerical results are presented for the triangular arrangement where the atoms are at equidistance from the sphere, and for the linear arrangement where the atoms and the sphere are aligned along a straight line. As demonstrated, the enhancement or reduction of the interaction potential in the presence of purely electric or magnetic spheres can be physically understood in terms of image charges.Comment: 13 pages, 7 figure

    New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell

    Get PDF
    Microbial biofilms are significant ecosystems where the existence of redox gradients drive electron transfer often via soluble electron mediators. This study describes the use of two interfacing working electrodes (WEs) to simulate redox gradients within close proximity (250 µm) for the detection and quantification of electron mediators. By using a common counter and reference electrode, the potentials of the two WEs were independently controlled to maintain a suitable “voltage window”, which enabled simultaneous oxidation and reduction of electron mediators as evidenced by the concurrent anodic and cathodic currents, respectively. To validate the method, the electrochemical properties of different mediators (hexacyanoferrate, HCF, riboflavin, RF) were characterized by stepwise shifting the “voltage window” (ranging between 25 and 200 mV) within a range of potentials after steady equilibrium current of both WEs was established. The resulting differences in electrical currents between the two WEs were recorded across a defined potential spectrum (between −1 V and +0.5 V vs. Ag/AgCl). Results indicated that the technique enabled identification (by the distinct peak locations at the potential scale) and quantification (by the peak of current) of the mediators for individual species as well as in an aqueous mixture. It enabled a precise determination of mid-potentials of the externally added mediators (HCF, RF) and mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture. The twin working electrode described is particularly suitable for studying mediator-dependent microbial electron transfer processes or simulating redox gradients as they exist in microbial biofilms

    Control Synthesis for the Flow-Based Microfluidic Large-Scale Integration Biochips

    Get PDF

    Purification and characterization of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. G1

    Get PDF
    A cyclodextrin glucanotransferase (CGTase) was successively purified by ammonium sulphate precipitation, and affinity chromatography on a-CD (epoxy)-Sepharose 6B column. The specific activity of the CGTase was increased approximately 2200-fold, from 8.43 U/mg protein to 18,866 U/mg protein. SDS-PAGE showed that the purified CGTase was homogeneous and the molecular weight of the purified CGTase was about 75 kDa. The molecular weight of the enzyme that was estimated by gel filtration under native condition was 79 kDa. This has indicated that Bacillus sp. G1 CGTase is a monomeric protein. The isoelectric point (pI) of the enzyme was about 8.8. Characterization of the enzyme exhibited optimum pH and temperature of 6.0 and 60 8C, respectively. The enzyme was stable from pH 7.0 to 9.0 and retained its high activity up to 60 8C. However, in the presence of 20 mM Ca2+, the purified CGTase is able to prolong its thermal stability up to 70 8C. CGTase was strongly inhibited by ZnSO4, CuSO4, CoCl2, FeSO4, FeCl3 and EDTA. Km and Vmax for the purified enzyme were 0.15 mg/ml and 60.39 mg bcyclodextrin/( ml min), respectively, with soluble starch as substrate. In cyclodextrin production, tapioca starch was found to be the best substrate used to produce CDs. The enzyme produced g- and b-CD in the ratio of 0.11:0.89 after 24 h incubation at 60 8C, without the presence of any selective agents
    corecore