18 research outputs found

    Speed of sound ultrasound: comparison with proton density fat fraction assessed with Dixon MRI for fat content quantification of the lower extremity

    Full text link
    OBJECTIVES To compare speed of sound (SoS) ultrasound (US) of the calves with Dixon magnetic resonance imaging (MRI) for fat content quantification. MATERIALS AND METHODS The study was approved by the local ethics committee. Fifty calf muscles of 35 women (age range 22-81 years) prospectively underwent an US and subsequent MRI (Dixon sequence) examination as well as body weight and impedance fat measurements. SoS (in m/s) was calculated positioning a reflector on the opposite side of a conventional US machine probe with the calf in between. Fiducial nitroglycerin markers were placed on the calf at the reflector and US probe end positions for later registration of the US sonification volumetric section. An automatic segmentation algorithm separated MRI adipose tissue, muscle and bone regions. MRI fat fraction of the entire leg slice (total) and intramuscular and adipose tissue fat fraction were calculated and correlation analysis and correlation coefficient comparison were performed. RESULTS Median SoS demonstrated a very strong (r = - 0.83 (95% CI - 0.90; - 0.72); p < 0.001) correlation with MRI total fat fraction, a strong (r = - 0.61 (95% CI - 0.76; - 0.40); p < 0.001) correlation with MRI adipose tissue fat fraction and a moderate (r = - 0.54 (95% CI - 0.71; - 0.31); p < 0.001) correlation with MRI intramuscular fat fraction. Impedance body fat percentage correlated strongly with SoS (r = - 0.72 (95% CI - 0.85; - 0.51); p < 0.001) and MRI total fat fraction (r = 0.61 (95% CI 0.34; 0.78); p < 0.001). For electrical impedance, significantly lower correlations (p = 0.033) were found for MRI total fat fraction compared with SoS. CONCLUSIONS Correlations of SoS with Dixon MRI fat fraction measurements were very strong to moderate. KEY POINTS • Correlations of speed of sound with Dixon MRI fat fraction measurements of the same body location were very strong to moderate. • Speed of sound measurements showed a high repeatability. • Speed of sound provides a sufficient discrimination range for fat fraction estimates

    Laser capture microdissection and cDNA array analysis of endometrium identify CCL16 and CCL21 as epithelial-derived inflammatory mediators associated with endometriosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the pathophysiology of chemokine secretion in endometriosis may offer a novel area of therapeutic intervention. This study aimed to identify chemokines differentially expressed in epithelial glands in eutopic endometrium from normal women and those with endometriosis, and to establish the expression profiles of key chemokines in endometriotic lesions.</p> <p>Methods</p> <p>Laser capture microdissection isolated epithelial glands from endometrial eutopic tissue from women with and without endometriosis in the mid-secretory phase of their menstrual cycles. Gene profiling of the excised glands used a human chemokine and receptor cDNA array. Selected chemokines were further examined using real-time PCR and immunohistochemistry.</p> <p>Results</p> <p>22 chemokine/receptor genes were upregulated and two downregulated in pooled endometrial epithelium of women with endometriosis compared with controls. CCL16 and CCL21 mRNA was confirmed as elevated in some women with endometriosis compared to controls on individual samples. Immunoreactive CCL16 and CCL21 were predominantly confined to glands in eutopic and ectopic endometrium: leukocytes also stained. Immunoreactive CCL16 was overall higher in glands in ectopic vs. eutopic endometrium from the same woman (P < 0.05). Staining for CCL16 and CCL21 was highly correlated in individual tissues.</p> <p>Conclusion</p> <p>This study provides novel candidate molecules and suggests a potential local role for CCL16 and CCL21 as mediators contributing to the inflammatory events associated with endometriosis.</p
    corecore