65 research outputs found

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Lack of Cardiac Nerve Sprouting after Intramyocardial Transplantation of Bone Marrow-Derived Stem Cells in a Swine Model of Chronic Ischemic Myocardium

    Get PDF
    Previous experimental studies suggested that mesenchymal stem cell transplantation causes cardiac nerve sprouting; however, whether bone marrow (BM)-derived mononuclear cells (MNC) and endothelial progenitor cells (EPC) can also lead to cardiac nerve sprouting and alter gap junction expression remains unclear. We investigated the effect of electroanatomical mapping-guided direct intramyocardial transplantation of BM-MNC (n = 8) and CD31+EPC (n = 8) compared with saline control (n = 8) on cardiac nerve sprouting and gap junction expression in a swine model of chronic ischemic myocardium. At 12 weeks after transplantation, the distribution and density of cardiac nerve sprouting were determined by staining of tyrosine hydroxylase (TH) and growth associated protein 43(GAP-43) and expression of connexin 43 in the targeted ischemic and remote normal myocardium. After 12 weeks, no animal developed sudden death after the transplantation. There were no significant differences in the number of cells with positive staining of TH and GAP-43 in the ischemic and normal myocardium between three groups. Furthermore, expression of connexin 43 was also similar in the ischemic and normal myocardia in each group of animals (P > 0.05). The results of this study demonstrated that intramyocardial BM-derived MNC or EPC transplantation in a large animal model of chronic myocardial ischemia was not associated with increased cardiac nerve sprouting over the ischemic myocardium

    Cerebellar-dependent delay eyeblink conditioning in adolescents with Specific Language Impairment

    Get PDF
    Cerebellar impairments have been hypothesized as part of the pathogenesis of Specific Language Impairment (SLI), although direct evidence of cerebellar involvement is sparse. Eyeblink Conditioning (EBC) is a learning task with well documented cerebellar pathways. This is the first study of EBC in affected adolescents and controls. 16 adolescent controls, 15 adolescents with SLI, and 12 adult controls participated in a delay EBC task. Affected children had low general language performance, grammatical deficits but no speech impairments. The affected group did not differ from the control adolescent or control adult group, showing intact cerebellar functioning on the EBC task. This study did not support cerebellar impairment at the level of basic learning pathways as part of the pathogenesis of SLI. Outcomes do not rule out cerebellar influences on speech impairment, or possible other forms of cerebellar functioning as contributing to SLI

    Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K+) hearts (P < 0.01): this was prevented by treatment with lidocaine (10 μM, P < 0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P < 0.05) maximal gradients (from 0.55 ± 0.14 to 2.35 ± 0.67 in the epicardium and from 0.67 ± 0.13 to 1.87 ± 0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from −2.14 ± 0.52 ms to 50.93 ± 14.45 ms in the epicardium and from 8.14 ± 1.49 ms to 44.64 ± 5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P > 0.05) on either maximal gradients (0.78 ± 0.27 in the epicardium and 0.83 ± 0.45 in the endocardium) or critical DIs (6.06 ± 2.10 ms and 7.04 ± 3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P < 0.05) both these parameters (1.05 ± 0.30 in the epicardium and 0.89 ± 0.36 in the endocardium and 30.38 ± 8.88 ms in the epicardium and 31.65 ± 4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings

    Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining multiple evidence-types from different information sources has the potential to reveal new relationships in biological systems. The integrated information can be represented as a relationship network, and clustering the network can suggest possible functional modules. The value of such modules for gaining insight into the underlying biological processes depends on their functional coherence. The challenges that we wish to address are to define and quantify the functional coherence of modules in relationship networks, so that they can be used to infer function of as yet unannotated proteins, to discover previously unknown roles of proteins in diseases as well as for better understanding of the regulation and interrelationship between different elements of complex biological systems.</p> <p>Results</p> <p>We have defined the functional coherence of modules with respect to the Gene Ontology (GO) by considering two complementary aspects: (i) the fragmentation of the GO functional categories into the different modules and (ii) the most representative functions of the modules. We have proposed a set of metrics to evaluate these two aspects and demonstrated their utility in <it>Arabidopsis thaliana</it>. We selected 2355 proteins for which experimentally established protein-protein interaction (PPI) data were available. From these we have constructed five relationship networks, four based on single types of data: PPI, co-expression, co-occurrence of protein names in scientific literature abstracts and sequence similarity and a fifth one combining these four evidence types. The ability of these networks to suggest biologically meaningful grouping of proteins was explored by applying Markov clustering and then by measuring the functional coherence of the clusters.</p> <p>Conclusions</p> <p>Relationship networks integrating multiple evidence-types are biologically informative and allow more proteins to be assigned to a putative functional module. Using additional evidence types concentrates the functional annotations in a smaller number of modules without unduly compromising their consistency. These results indicate that integration of more data sources improves the ability to uncover functional association between proteins, both by allowing more proteins to be linked and producing a network where modular structure more closely reflects the hierarchy in the gene ontology.</p

    New index for categorising cardiac reentrant wave: in silico evaluation.

    No full text
    Based on the similarity between a reentrant wave in cardiac tissue and a vortex in fluid dynamics, the authors hypothesised that a new non-dimensional index, like the Reynolds number in fluid dynamics, may play a critical role in categorising reentrant wave dynamics. Therefore the goal of the present study is to devise a new index to characterise electric wave conduction in cardiac tissue and examined whether this index can be used as a biomarker for categorising the reentrant wave pattern in cardiac tissue. Similar to the procedure used to derive the Reynolds number in fluid dynamics, the authors used a non-dimensionalisation technique to obtain the new index. Its usefulness was verified using a two-dimensional simulation model of electrical wave propagation in cardiac tissue. The simulation results showed that electrical waves in cardiac tissue move into an unstable region when the index exceeds a threshold value
    corecore