757 research outputs found

    Josephson effects in MgB2 meta masked ion damage junctions

    Get PDF
    Ion beam damage combined with nanoscale focused ion beam direct milling was used to create manufacturable SNS type Josephson junctions in 100 nm thick MgB2_{2} with TC_{C} of 38 K. The junctions show non-hysteretic current - voltage characteristics between 36 and 4.2 K. Experimental evidence for the dc and ac Josephson effects in MgB2_{2} metal masked ion damage junctions are presented. This technique is particularly useful for prototyping devices due to its simplicity and flexibility of fabrication and has a great potential for high-density integration.Comment: 12 pages, 4 figures, RevTeX4, submitted to AP

    Immunotherapy for neuroblastoma using syngeneic fibroblasts transfected with IL-2 and IL-12

    Get PDF
    Cytokine-modified tumour cells have been used in clinical trials for immunotherapy of neuroblastoma, but primary tumour cells from surgical biopsies are difficult to culture. Autologous fibroblasts, however, are straightforward to manipulate in culture and easy to transfect using nonviral or viral vectors. Here we have compared the antitumour effect of fibroblasts and tumour cells transfected ex vivo to coexpress interleukin-2 (IL-2) and IL-12 in a syngeneic mouse model of neuroblastoma. Coinjection of cytokine-modified fibroblasts with Neuro-2A tumour cells abolished their in vivo tumorigenicity. Treatment of established tumours with three intratumoral doses of transfected fibroblasts showed a significant therapeutic effect with reduced growth or complete eradication of tumours in 90% of mice, associated with extensive leukocyte infiltration. Splenocytes recovered from vaccinated mice showed enhanced IL-2 production following Neuro-2A coculture, and increased cytotoxicity against Neuro-2A targets compared with controls. Furthermore, 100% of the tumour-free mice exhibited immune memory against tumour cells when rechallenged three months later. The potency of transfected fibroblasts was equivalent to that of tumour cells in all experiments. We conclude that syngeneic fibroblasts cotransfected with IL-2 and IL-12 mediate therapeutic effects against established disease, and are capable of generating immunological memory. Furthermore, as they are easier to recover and manipulate than autologous tumour cells, fibroblasts provide an attractive alternative immunotherapeutic strategy for the treatment of neuroblastoma

    Affinity Inequality among Serum Antibodies That Originate in Lymphoid Germinal Centers

    Get PDF
    Upon natural infection with pathogens or vaccination, antibodies are produced by a process called affinity maturation. As affinity maturation ensues, average affinity values between an antibody and ligand increase with time. Purified antibodies isolated from serum are invariably heterogeneous with respect to their affinity for the ligands they bind, whether macromolecular antigens or haptens (low molecular weight approximations of epitopes on antigens). However, less is known about how the extent of this heterogeneity evolves with time during affinity maturation. To shed light on this issue, we have taken advantage of previously published data from Eisen and Siskind (1964). Using the ratio of the strongest to the weakest binding subsets as a metric of heterogeneity (or affinity inequality), we analyzed antibodies isolated from individual serum samples. The ratios were initially as high as 50-fold, and decreased over a few weeks after a single injection of small antigen doses to around unity. This decrease in the effective heterogeneity of antibody affinities with time is consistent with Darwinian evolution in the strong selection limit. By contrast, neither the average affinity nor the heterogeneity evolves much with time for high doses of antigen, as competition between clones of the same affinity is minimal.Ragon Institute of MGH, MIT and HarvardSamsung Scholarship FoundationNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    Phospholipids and sports performance

    Get PDF
    Phospholipids are essential components of all biological membranes. Phosphatidylcholine (PC) and Phosphatidylserine (PS) are Phosphatidyl-phospholipids that are required for normal cellular structure and function. The participation in physical activity often challenges a variety of physiological systems; consequently, the ability to maintain normal cellular function during activity can determine sporting performance. The participation in prolonged intense exercise has been shown to reduce circulatory choline concentrations in some individuals. As choline is a pre-cursor to the neurotransmitter Acetylcholine, this finding has encouraged researchers to investigate the hypothesis that supplementation with PC (or choline salts) could enhance sporting performance. Although the available data that evaluates the effects of PC supplementation on performance are equivocal, acute oral supplementation with PC (~0.2 g PC per kg body mass) has been demonstrated to improve performance in a variety of sporting activities where exercise has depleted circulatory choline concentrations. Short term oral supplementation with soy-derived PS (S-PS) has been reported to attenuate circulating cortisol concentrations, improve perceived well-being, and reduce perceived muscle soreness after exercise. More recently, short term oral supplementation (750 mg per day of S-PS for 10 days) has been demonstrated to improve exercise capacity during high intensity cycling and tended to increase performance during intermittent running. Although more research is warranted to determine minimum dietary Phospholipid requirements for optimal sporting performance, these findings suggest that some participants might benefit from dietary interventions that increase the intakes of PC and PS

    PGF2α-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increase in cancer cell invasion and microvascular density is associated with a poorer prognosis for patients with endometrial cancer. In endometrial adenocarcinoma F-prostanoid (FP) receptor expression is elevated, along with its ligand prostaglandin (PG)F<sub>2α</sub>, where it regulates expression and secretion of a host of growth factors and chemokines involved in tumorigenesis. This study investigates the expression, regulation and role of a disintegrin and metalloproteinase with thrombospondin repeat 1 (ADAMTS1) in endometrial adenocarcinoma cells by PGF<sub>2α </sub>via the FP receptor.</p> <p>Methods</p> <p>Human endometrium and adenocarcinoma tissues were obtained in accordance with Lothian Research Ethics Committee guidance with informed patient consent. Expression of ADAMTS1 mRNA and protein in tissues was determined by quantitative RT-PCR analysis and immunohistochemistry. Signal transduction pathways regulating ADAMTS1 expression in Ishikawa cells stably expressing the FP receptor to levels seen in endometrial cancer (FPS cells) were determined by quantitative RT-PCR analysis. In vitro invasion and proliferation assays were performed with FPS cells and human umbilical vein endothelial cells (HUVECs) using conditioned medium (CM) from PGF<sub>2α</sub>-treated FPS cells from which ADAMTS1 was immunoneutralised and/or recombinant ADAMTS1. The role of endothelial ADAMTS1 in endothelial cell proliferation was confirmed with RNA interference. The data in this study were analysed by T-test or ANOVA.</p> <p>Results</p> <p>ADAMTS1 mRNA and protein expression is elevated in endometrial adenocarcinoma tissues compared with normal proliferative phase endometrium and is localised to the glandular and vascular cells. Using FPS cells, we show that PGF2α-FP signalling upregulates ADAMTS1 expression via a calmodulin-NFAT-dependent pathway and this promotes epithelial cell invasion through ECM and inhibits endothelial cell proliferation. Furthermore, we show that CM from FPS cells regulates endothelial cell ADAMTS1 expression in a rapid biphasic manner. Using RNA interference we show that endothelial cell ADAMTS1 also negatively regulates cellular proliferation.</p> <p>Conclusions</p> <p>These data demonstrate elevated ADAMTS1 expression in endometrial adenocarcinoma. Furthermore we have highlighted a mechanism whereby FP receptor signalling regulates epithelial cell invasion and endothelial cell function via the PGF<sub>2α</sub>-FP receptor mediated induction of ADAMTS1.</p

    High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Get PDF
    Background: Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti

    Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Get PDF
    A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900–1,000 emu/cm3) characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach

    Measurement of the proton form factor by studying e+eppˉe^{+} e^{-}\rightarrow p\bar{p}

    Full text link
    Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of e+eppˉe^{+}e^{-}\rightarrow p\bar{p} at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal (GE=GM)(|G_{E}|= |G_{M}|). In addition, the ratio of electric to magnetic form factors, GE/GM|G_{E}/G_{M}|, and GM|G_{M}| are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at s=\sqrt{s}= 2232.4 and 2400.0 MeV and a combined sample at s\sqrt{s} = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The GE/GM|G_{E}/G_{M}| ratios are close to unity and consistent with BaBar results in the same q2q^{2} region, which indicates the data are consistent with the assumption that GE=GM|G_{E}|=|G_{M}| within uncertainties.Comment: 13 pages, 24 figure

    Red blood cell-derived semaphorin 7A promotes thrombo-inflammation in myocardial ischemia-reperfusion injury through platelet GPIb.

    Get PDF
    Myocardial ischemia is one of the leading health problems worldwide. Therapy consists of the restitution of coronary perfusion which is followed by myocardial inflammation. Platelet-neutrophil interaction is a crucial process during inflammation, yet its consequences are not fully understood. Here, we show that platelet-neutrophil complexes (PNCs) are increased in patients with acute myocardial infarction and that this is associated with increased levels of neuronal guidance protein semaphorin 7A (SEMA7A). To investigate this further, we injected WT animals with Sema7a and found increased infarct size with increased numbers of PNCs. Experiments in genetically modified animals identify Sema7a on red blood cells to be crucial for this condition. Further studies revealed that Sema7a interacts with the platelet receptor glycoprotein Ib (GPIb). Treatment with anti-Sema7a antibody protected from myocardial tissue injury. In summary, we show that Sema7a binds to platelet GPIb and enhances platelet thrombo-inflammatory activity, aggravating post-ischemic myocardial tissue injury
    corecore